Loading

11.6 题解报告

最后一个题没时间整理了,直接放的std

改天再回来看。(希望能回来

solution

考虑每个数的贡献。

记录每个点需要参与传递的回合数,因为所有点每个回合的传递都是同时完成的,最后对所有点取 \(max\) 就是答案。

一个点 \(i\) 参与的回合有这么几种情况。

设最后的平均值为 \(rev\)

  • \(\sum_{j = 1}^{j = i - 1}a_j < rev \times (i - 1) ~\&\& \sum_{j = i + 1}^{j = n}a_j < rev \times (n - i)\)

\(i\) 点要向两边传递,答案就是向两边传递求和。

其他的情况:两边向中间传,从左到右传,从右到左;都是取 \(\max\),因为这些操作都是一步完成的。

code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e5 + 5;
int read() {
 int x = 0, f = 1; char c = getchar();
 while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
 while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
 return x * f;
}
int n, a[MAXN], sum[MAXN], Ans, rev;
signed main() {
  n = read();
  for (int i = 1; i <= n; i++) a[i] = read(), sum[i] = sum[i - 1] + a[i];
  rev = sum[n] / n;
  for (int i = 1; i <= n; i++) {
  	int l = sum[i - 1] - rev * (i - 1), r = (sum[n] - sum[i]) - rev * (n - i);
  	if(l < 0 && r < 0) Ans = max(Ans, -l - r);
  	else Ans = max(Ans, max(abs(l), abs(r)));
  }
  cout<<Ans;
  return 0;
}

T2 pigeon

solution

所有数的顺序并不影响,按照所有数从小到大排序后可以转化为取倍数问题,设 \(f_i\) 表示最后所取得数是 \(i\) 的最大价值,转移就枚举上一个取得数就好了,用埃氏筛思路可以做到 \(O(nlogn)\)

code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e6 + 5;
int read() {
 int x = 0, f = 1; char c = getchar();
 while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
 while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
 return x * f;
}
int f[MAXN], cnt[MAXN], Ans, n;
signed main() {
  n = read();
  for (int i = 1; i <= n; i++) {
  	int x = read();
  	cnt[x]++, f[x]++;
  }
  for (int i = 1; i <= 1000000; i++) {
  	  if(cnt[i]) Ans = max(Ans, f[i]);
	  for (int j = i + i; j <= 1000000; j += i) if(cnt[i]) f[j] = max(f[j], f[i] + cnt[j]);
  }
  cout<<Ans;
  return 0;
}

T3

solution

二分答案。
每次检验的时候会发现,一组卡牌中的一张选了会导致其他某组卡牌必须选另外一张,从而转化为 2-SAT 问题。
对于 所有卡牌战斗力的最大值减去最小值小于等于 100 的部分分,输出 0。
由于数据范围过大,无法直接 2-SAT 建图,注意到所有的边都是在一个区间里面的边,所以用线段树优化建图。

code

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<algorithm>

using namespace std;

const int BUF_SIZE = 30;
char buf[BUF_SIZE], *buf_s = buf, *buf_t = buf + 1;
  
#define PTR_NEXT() \
    { \
        buf_s ++; \
        if (buf_s == buf_t) \
        { \
            buf_s = buf; \
            buf_t = buf + fread(buf, 1, BUF_SIZE, stdin); \
        } \
    }
   
#define readint(_n_) \
    { \
        while (*buf_s != '-' && !isdigit(*buf_s)) \
            PTR_NEXT(); \
        bool register _nega_ = false; \
        if (*buf_s == '-') \
        { \
            _nega_ = true; \
            PTR_NEXT(); \
        } \
        int register _x_ = 0; \
        while (isdigit(*buf_s)) \
        { \
            _x_ = _x_ * 10 + *buf_s - '0'; \
            PTR_NEXT(); \
        } \
        if (_nega_) \
            _x_ = -_x_; \
        (_n_) = (_x_); \
    }

#define readstr(_s_) \
    { \
        while (!isupper(*buf_s)) \
            PTR_NEXT(); \
        char register *_ptr_ = (_s_); \
        while (isupper(*buf_s) || *buf_s == '-') \
        { \
            *(_ptr_ ++) = *buf_s; \
            PTR_NEXT(); \
        } \
        (*_ptr_) = '\0'; \
    }

#define readlonglong(_n_) \
    { \
        while (*buf_s != '-' && !isdigit(*buf_s)) \
            PTR_NEXT(); \
        bool register _nega_ = false; \
        if (*buf_s == '-') \
        { \
            _nega_ = true; \
            PTR_NEXT(); \
        } \
        long long register _x_ = 0; \
        while (isdigit(*buf_s)) \
        { \
            _x_ = _x_ * 10 + *buf_s - '0'; \
            PTR_NEXT(); \
        } \
        if (_nega_) \
            _x_ = -_x_; \
        (_n_) = (_x_); \
    }

#define wmt 1,(n<<1),1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

const int maxn=200010;
const int maxp=maxn+(maxn<<2);
const int maxm=maxn+maxp+maxn*40;

int n,size,cnt,en,t,dfn[maxp],low[maxp],s[maxp],belong[maxp],pos[maxn];

bool instack[maxp];

struct edge
{
	int e;
	edge *next;
}*v[maxp],ed[maxm];

void add_edge(int s,int e)
{
	en++;
	ed[en].next=v[s];v[s]=ed+en;v[s]->e=e;
}

struct rec
{
	int v,p;
	rec(){}
	rec(int a,int b)
	{
		v=a;p=b;
	}
}z[maxn];

bool operator<(const rec &a,const rec &b)
{
	return a.v<b.v;
}

void dfs(int p)
{
	t++;
	dfn[p]=low[p]=t;
	instack[p]=true;
	s[++size]=p;
	for (edge *e=v[p];e;e=e->next)
		if (!dfn[e->e])
		{
			dfs(e->e);
			low[p]=min(low[p],low[e->e]);
		}
		else
		{
			if (instack[e->e]) low[p]=min(low[p],dfn[e->e]);
		}
	if (dfn[p]==low[p])
	{
		cnt++;
		while (s[size]!=p)
		{
			belong[s[size]]=cnt;
			instack[s[size]]=false;
			size--;
		}
		belong[p]=cnt;
		instack[p]=false;
		size--;
	}
}

void build(int l,int r,int rt)
{
	if (l==r)
	{
		add_edge(rt+(n<<1),z[l].p<=n?z[l].p+n:z[l].p-n);
		return;
	}
	int m=(l+r)>>1;
	build(lson);
	build(rson);
	add_edge(rt+(n<<1),(rt<<1)+(n<<1));
	add_edge(rt+(n<<1),(rt<<1|1)+(n<<1));
}

void insert(int l,int r,int rt,int nowl,int nowr,int p)
{
	if (nowl<=l && r<=nowr)
	{
		add_edge(p,rt+(n<<1));
		return;
	}
	int m=(l+r)>>1;
	if (nowl<=m) insert(lson,nowl,nowr,p);
	if (m<nowr) insert(rson,nowl,nowr,p);
}

bool check(int k)
{
	en=0;cnt=0;
	memset(v,0,sizeof(v));
	memset(dfn,0,sizeof(dfn));

	build(wmt);

	int r=1,l=1;

	for (int a=1;a<=(n<<1);a++)
	{
		int op,p=z[a].p;
		if (p<=n) op=pos[p+n];
		else op=pos[p-n];
		while (r<=a && z[r].v <= z[a].v-k)
			r++;
		if (r<a && r>=1 && z[r].v > z[a].v-k) 
		{
			if (op>=r && op<=a-1)
			{
				if (op>r) insert(wmt,r,op-1,z[a].p);
				if (op<a-1) insert(wmt,op+1,a-1,z[a].p);
			}
			else insert(wmt,r,a-1,z[a].p);
		}
		while (l<=(n<<1) && z[l].v < z[a].v+k)
			l++;
		l--;
		if (l>a && l<=(n<<1) && z[l].v < z[a].v+k) 
		{
			if (op>=a+1 && op<=l)
			{
				if (op>a+1) insert(wmt,a+1,op-1,z[a].p);
				if (op<l) insert(wmt,op+1,l,z[a].p);
			}
			else insert(wmt,a+1,l,z[a].p);
		}
	}

	for (int a=1;a<=(n<<1);a++)
		if (!dfn[a]) dfs(a);
	for (int a=1;a<=n;a++)
		if (belong[a]==belong[a+n]) return false;
	return true;
}

int main()
{
	readint(n);
	int minv=0x3f3f3f3f,maxv=-0x3f3f3f3f;
	int x=0;
	for (int a=1;a<=n;a++)
	{
		int v1,v2;
		readint(v1);
		readint(v2);
		z[++x]=rec(v1,a);
		z[++x]=rec(v2,a+n);
		minv=min(minv,min(v1,v2));
		maxv=max(maxv,max(v1,v2));
	}
	if (maxv-minv+1 < n)
	{
		printf("0\n");
		return 0;
	}
	sort(z+1,z+x+1);
	for (int a=1;a<=(n<<1);a++)
		pos[z[a].p]=a;
	int l=0,r=1000000001;
	while (l+1!=r)
	{
		int m=(l+r)>>1;
		if (check(m)) l=m;
		else r=m;
	}
	printf("%d\n",l);

	return 0;
}
posted @ 2021-11-08 06:24  Dita  阅读(28)  评论(0编辑  收藏  举报