John's trip(POJ1041+欧拉回路+打印路径)

题目链接:http://poj.org/problem?id=1041

题目:

题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发又回到起点的字典序最小的路径,如果达不到输出Round trip does not exist.

思路:首先得判断是否存在欧拉回路,如果不存在则输出“Round trip does not exist.”。记录每个路口的度,如果存在度为奇数得路口则是不存在欧拉回路得图,否则用mp[u][t]=v来表示u可以通过t这条街道到达v,跑一边欧拉回路并记录路径即可。

代码实现如下:

 1 #include <set>
 2 #include <map>
 3 #include <queue>
 4 #include <stack>
 5 #include <cmath>
 6 #include <bitset>
 7 #include <cstdio>
 8 #include <string>
 9 #include <vector>
10 #include <cstdlib>
11 #include <cstring>
12 #include <iostream>
13 #include <algorithm>
14 using namespace std;
15 
16 typedef long long ll;
17 typedef pair<ll, ll> pll;
18 typedef pair<ll, int> pli;
19 typedef pair<int, ll> pil;;
20 typedef pair<int, int> pii;
21 typedef unsigned long long ull;
22 
23 #define lson i<<1
24 #define rson i<<1|1
25 #define bug printf("*********\n");
26 #define FIN freopen("D://code//in.txt", "r", stdin);
27 #define debug(x) cout<<"["<<x<<"]" <<endl;
28 #define IO ios::sync_with_stdio(false),cin.tie(0);
29 
30 const double eps = 1e-8;
31 const int mod = 10007;
32 const int maxn = 1e6 + 7;
33 const double pi = acos(-1);
34 const int inf = 0x3f3f3f3f;
35 const ll INF = 0x3f3f3f3f3f3f3f;
36 
37 int s, u, v, t, mx, p;
38 int mp[55][2007], in[55], vis[2007], ans[2007];
39 
40 void eulergraph(int s) {
41     for(int i = 1; i <= mx; i++) {
42         if(mp[s][i] && !vis[i]) {
43             vis[i] = 1;
44             eulergraph(mp[s][i]);
45             ans[++p] = i;
46         }
47     }
48 }
49 
50 int main() {
51     //FIN;
52     while(~scanf("%d%d", &u, &v)) {
53         if(u == 0 && v == 0) break;
54         s = min(u, v);
55         p = 0;
56         memset(in, 0, sizeof(vis));
57         memset(mp, 0, sizeof(mp));
58         memset(vis, 0, sizeof(vis));
59         scanf("%d", &t);
60         in[u]++, in[v]++;
61         mx = t;
62         mp[u][t] = v, mp[v][t] = u;
63         while(~scanf("%d%d", &u, &v)) {
64             if(u == 0 && v == 0) break;
65             scanf("%d", &t);
66             mx = max(mx, t);
67             in[u]++, in[v]++;
68             mp[u][t] = v, mp[v][t] = u;
69         }
70         int flag = 0;
71         for(int i = 1; i <= 45; i++) {
72             if(in[i] & 1) {
73                 printf("Round trip does not exist.\n");
74                 flag = 1;
75                 break;
76             }
77         }
78         if(flag) continue;
79         eulergraph(s);
80         for(int i = p; i >= 1; i--) {
81             printf("%d%c", ans[i], i == 1 ? '\n' : ' ');
82         }
83     }
84     return 0;
85 }

 

posted @ 2018-07-31 16:01  Dillonh  阅读(427)  评论(1编辑  收藏  举报