Gorgeous Sequence(HDU5360+线段树)
题目链接
题面
思路
对于线段树的每个结点我们存这个区间的最大值\(mx\)、最大值个数\(cnt\)、严格第二大数\(se\),操作\(0\):
- 如果\(mx\leq val\)则不需要更新改区间;
- 如果\(se\leq val<mx\)则只需将区间最大值进行更新,此时\(sum=sum-cnt\times (mx - val)\);
- 如果\(val<se\)则递归下去。
(详情请看吉老师\(ppt\)
因为一开始加了个\(lazy\)标记导致情况复杂化,且不好处理,对拍好久才发现。
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 1000000 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int t, n, q, op, l, r, x;
int a[maxn];
struct node {
int l, r, mx, se, cnt;
LL sum;
}segtree[maxn<<2];
void push_up(int rt) {
if(segtree[lson].mx >= segtree[rson].mx) {
segtree[rt].mx = segtree[lson].mx;
if(segtree[lson].mx == segtree[rson].mx) {
segtree[rt].cnt = segtree[lson].cnt + segtree[rson].cnt;
segtree[rt].se = max(segtree[lson].se, segtree[rson].se);
} else {
segtree[rt].cnt = segtree[lson].cnt;
segtree[rt].se = max(segtree[lson].se, segtree[rson].mx);
}
} else {
segtree[rt].mx = segtree[rson].mx;
segtree[rt].cnt = segtree[rson].cnt;
segtree[rt].se = max(segtree[lson].mx, segtree[rson].se);
}
segtree[rt].sum = segtree[lson].sum + segtree[rson].sum;
}
void push_down(int rt) {
if(segtree[lson].mx > segtree[rt].mx) {
segtree[lson].sum -= 1LL * segtree[lson].cnt * (segtree[lson].mx - segtree[rt].mx);
segtree[lson].mx = segtree[rt].mx;
}
if(segtree[rson].mx > segtree[rt].mx) {
segtree[rson].sum -= 1LL * segtree[rson].cnt * (segtree[rson].mx - segtree[rt].mx);
segtree[rson].mx = segtree[rt].mx;
}
}
void build(int rt, int l, int r) {
segtree[rt].l = l, segtree[rt].r = r;
segtree[rt].cnt = 0;
segtree[rt].se = -inf;
if(l == r) {
scanf("%d", &segtree[rt].mx);
segtree[rt].cnt = 1;
segtree[rt].sum = segtree[rt].mx;
return;
}
int mid = (l + r) >> 1;
build(lson, l, mid);
build(rson, mid + 1, r);
push_up(rt);
}
void update(int rt, int l, int r, int x) {
if(segtree[rt].l == segtree[rt].r) {
if(x < segtree[rt].mx) {
segtree[rt].mx = x;
segtree[rt].sum = x;
}
return;
}
if(segtree[rt].mx <= x) {
return;
}
if(segtree[rt].l == l && segtree[rt].r == r && segtree[rt].se < x) {
segtree[rt].sum -= 1LL * segtree[rt].cnt * (segtree[rt].mx - x);
segtree[rt].mx = x;
return;
}
push_down(rt);
int mid = (segtree[rt].l + segtree[rt].r) >> 1;
if(r <= mid) update(lson, l, r, x);
else if(l > mid) update(rson, l, r, x);
else {
update(lson, l, mid, x);
update(rson, mid + 1, r, x);
}
push_up(rt);
}
int query1(int rt, int l, int r) {
if(segtree[rt].l == l && segtree[rt].r == r) {
return segtree[rt].mx;
}
push_down(rt);
int mid = (segtree[rt].l + segtree[rt].r) >> 1;
if(r <= mid) return query1(lson, l, r);
else if(l > mid) return query1(rson, l, r);
else return max(query1(lson, l, mid), query1(rson, mid + 1, r));
}
LL query2(int rt, int l, int r) {
if(segtree[rt].l == l && segtree[rt].r == r) {
return segtree[rt].sum;
}
push_down(rt);
int mid = (segtree[rt].l + segtree[rt].r) >> 1;
if(r <= mid) return query2(lson, l, r);
else if(l > mid) return query2(rson, l, r);
else return query2(lson, l, mid) + query2(rson, mid + 1, r);
}
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif // ONLINE_JUDGE
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &q);
build(1, 1, n);
while(q--) {
scanf("%d%d%d", &op, &l, &r);
if(op == 0) {
scanf("%d", &x);
update(1, l, r, x);
} else if(op == 1) {
printf("%d\n", query1(1, l, r));
} else {
printf("%lld\n", query2(1, l, r));
}
}
}
return 0;
}
\(ps.\)在这里贴几组数据帮助大家找\(bug\):
Input
4
3 3
1167335444 1577370753 1848018061
0 1 1 577330338
0 2 2 25842012
0 1 2 2081289238
13 4
2092509202 227315181 749615568 1128285623 1865077425 1779921231 1864459374 2072421312 1354378672 20493878 1571784125 1812319171 1767594153
0 1 5 1790650736
0 1 13 1584744642
2 8 8
2 1 1
5 5
206578960 2138572088 1531732505 476202306 1864171007
1 1 1
0 2 2 159050728
1 1 3
1 2 3
2 1 2
7 1
243178151 1437281627 1355768485 1346835035 87676247 1491584559 2023149422
1 4 6
Output
1584744642
1584744642
206578960
1531732505
1531732505
365629688
1491584559
Input
1
3 5
1281319710 961042073 1775161183
0 1 3 1126944798
1 3 3
2 1 2
1 1 1
0 2 2 339585676
Output
1126944798
2087986871
1126944798
版权声明:本文允许转载,转载时请注明原博客链接,谢谢~