TensorFlow笔记——

主要依赖包

protocal buffer

处理结构化数据的工具:序列化(结构化数据->数据流) + 还原(数据流->结构化数据)

protocol buffer与XML和JSON的区别:

  1. 数据流是二进制流而不是可读的字符串
  2. 使用时需要先定义数据的格式(schema),还原时需要使用到这个定义好的数据格式——>优势:小、快速

bazel

自动化构建工具

项目空间(workspace)

bazel的一个基本概念。包含源代码+输出编译结果的软连接(symbolic link)地址

一个项目空间内,bazel通过BUILD文件来找到需要编译的目标

。。。。这里有些抽象 没看太明白

 

TensorFlow的计算模型——计算图 

计算图

TensorFlow的计算可以表示为一个有向图,或称为计算图。系统会维护一个默认的计算图,可以通过tf.get_default_graph()得到

节点

运算操作

节点与节点之间的连线。

张量(tensor)

边中流动(flow)的数据。有某张量a,他所属的张量图为a.graph,无括号。

 

从功能上说:

零阶张量是一个标量,一个数

一阶张量是一个一维数组,向量

n阶张量是一个n维数组

 

张量和计算图上的每个节点代表的计算结果是对应的。

 

一个张量中主要保存了三个属性:

名字——node:src_output,src_output表示这个节点的第几个输出,例如:add:0

维度

类型

 

依赖控制

没有数据流的边。作用是让他的节点执行完之后,再执行目标节点,用户可以使用依赖控制进行灵活的条件控制,比如限制内存使用的最高峰值。

 

posted @ 2017-07-05 01:58  DianeSoHungry  阅读(199)  评论(0编辑  收藏  举报