Comparable与Comparator
Comparable & Comparator 都是用来实现集合中元素的比较、排序的,只是 Comparable 是在集合内部定义的方法实现的排序,Comparator 是在集合外部实现的排序,所以,如想实现排序,就需要在集合外定义 Comparator 接口的方法或在集合内实现 Comparable 接口的方法。
1.Comparable 接口:
Comparable可以认为是一个内比较器,实现了Comparable接口的类有一个特点,就是这些类是可以和自己比较的,至于具体和另一个实现了Comparable接口的类如何比较,则依赖compareTo方法的实现,compareTo方法也被称为自然比较方法。如果开发者add进入一个Collection的对象想要Collections的sort方法帮你自动进行排序的话,那么这个对象必须实现Comparable接口。compareTo方法的返回值是int,有三种情况:
- 比较者大于被比较者(也就是compareTo方法里面的对象),那么返回正整数
- 比较者等于被比较者,那么返回0
- 比较者小于被比较者,那么返回负整数
实例:
将对象Student 按照名字排序; (Comparable的泛型未必就一定要是Student,可以是任何自己定义的规则 )
public class Student implements Comparable<Student> {
private String name;
public Student(String name) {
super();
this.name = name;
}
@Override
public int compareTo(Student o) {
if (this.name.compareTo(o.name) > 0) {
return 1;
} else if (this.name.compareTo(o.name) == 0) {
return 0;
} else {
return -1;
}
}
public static void main(String[] args) {
Student student1 = new Student("a");
Student student2 = new Student("c");
Student student3 = new Student("f");
System.out.println(student2.compareTo(student1));
System.out.println(student2.compareTo(student3));
}
}
2.Comparator接口:
Comparator可以认为是是一个外比较器,用 Comparator 是策略模式(strategy design pattern),就是不改变对象自身,而用一个策略对象(strategy object)来改变它的行为。
1、一个对象不支持自己和自己比较(没有实现Comparable接口),但是又想对两个对象进行比较
2、一个对象实现了Comparable接口,但是开发者想要自定义比较规则;
Comparator接口里面有一个compare方法,方法有两个参数T o1和T o2,是泛型的表示方式,分别表示待比较的两个对象,方法返回值和Comparable接口一样是int,有三种情况:
- o1大于o2,返回正整数;
- o1等于o2,返回0;
- o1小于o2,返回负整数;
实例:
package package1;
import java.util.Comparator;
public class StudentComparator implements Comparator<Student>{
@Override
public int compare(Student o1, Student o2) {
// TODO Auto-generated method stub
return o1.getAge()-o2.getAge()==0?0:(o1.getAge()-o2.getAge()>1?1:-1);
}
public static void main(String[] args) {
StudentComparator studentComparator = new StudentComparator();
Student s1 = new Student ("e",12);
Student s2 = new Student ("f",15);
System.out.println(studentComparator.compare(s1, s2));
}
}
总结一下,两种比较器Comparable和Comparator,后者相比前者有如下优点:
1、如果实现类没有实现Comparable接口,又想对两个类进行比较(或者实现类实现了Comparable接口,但是对compareTo方法内的比较算法不满意),那么可以实现Comparator接口,自定义一个比较器,写比较算法.
2、实现Comparable接口的方式比实现Comparator接口的耦合性 要强一些,如果要修改比较算法,要修改Comparable接口的实现类,而实现Comparator的类是在外部进行比较的,不需要对实现类有任何修 改。从这个角度说,其实有些不太好,尤其在我们将实现类的.class文件打成一个.jar文件提供给开发者使用的时候。实际上实现Comparator 接口的方式后面会写到就是一种典型的策略模式。
源码
Comparable 源码
package java.lang;
import java.util.*;
public interface Comparable<T> {
public int compareTo(T o);
}
Comparator源码 :
package java.util;
import java.io.Serializable;
import java.util.function.Function;
import java.util.function.ToIntFunction;
import java.util.function.ToLongFunction;
import java.util.function.ToDoubleFunction;
import java.util.Comparators;
@FunctionalInterface
public interface Comparator<T> {
int compare(T o1, T o2);
boolean equals(Object obj);
default Comparator<T> reversed() {
return Collections.reverseOrder(this);
}
default Comparator<T> thenComparing(Comparator<? super T> other) {
Objects.requireNonNull(other);
return (Comparator<T> & Serializable) (c1, c2) -> {
int res = compare(c1, c2);
return (res != 0) ? res : other.compare(c1, c2);
};
}
default <U> Comparator<T> thenComparing(
Function<? super T, ? extends U> keyExtractor,
Comparator<? super U> keyComparator)
{
return thenComparing(comparing(keyExtractor, keyComparator));
}
default <U extends Comparable<? super U>> Comparator<T> thenComparing(
Function<? super T, ? extends U> keyExtractor)
{
return thenComparing(comparing(keyExtractor));
}
default Comparator<T> thenComparingInt(ToIntFunction<? super T> keyExtractor) {
return thenComparing(comparingInt(keyExtractor));
}
default Comparator<T> thenComparingLong(ToLongFunction<? super T> keyExtractor) {
return thenComparing(comparingLong(keyExtractor));
}
default Comparator<T> thenComparingDouble(ToDoubleFunction<? super T> keyExtractor) {
return thenComparing(comparingDouble(keyExtractor));
}
public static <T extends Comparable<? super T>> Comparator<T> reverseOrder() {
return Collections.reverseOrder();
}
@SuppressWarnings("unchecked")
public static <T extends Comparable<? super T>> Comparator<T> naturalOrder() {
return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE;
}
public static <T> Comparator<T> nullsFirst(Comparator<? super T> comparator) {
return new Comparators.NullComparator<>(true, comparator);
}
public static <T> Comparator<T> nullsLast(Comparator<? super T> comparator) {
return new Comparators.NullComparator<>(false, comparator);
}
public static <T, U> Comparator<T> comparing(
Function<? super T, ? extends U> keyExtractor,
Comparator<? super U> keyComparator)
{
Objects.requireNonNull(keyExtractor);
Objects.requireNonNull(keyComparator);
return (Comparator<T> & Serializable)
(c1, c2) -> keyComparator.compare(keyExtractor.apply(c1),
keyExtractor.apply(c2));
}
public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
Function<? super T, ? extends U> keyExtractor)
{
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable)
(c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
}
public static <T> Comparator<T> comparingInt(ToIntFunction<? super T> keyExtractor) {
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable)
(c1, c2) -> Integer.compare(keyExtractor.applyAsInt(c1), keyExtractor.applyAsInt(c2));
}
public static <T> Comparator<T> comparingLong(ToLongFunction<? super T> keyExtractor) {
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable)
(c1, c2) -> Long.compare(keyExtractor.applyAsLong(c1), keyExtractor.applyAsLong(c2));
}
public static<T> Comparator<T> comparingDouble(ToDoubleFunction<? super T> keyExtractor) {
Objects.requireNonNull(keyExtractor);
return (Comparator<T> & Serializable)
(c1, c2) -> Double.compare(keyExtractor.applyAsDouble(c1), keyExtractor.applyAsDouble(c2));
}
}