UML类图
类图 是用于描述系统中所包含的类以及它们之间的相互关系,帮助人们简化对系统的理解,它是系统分析和设计阶段的重要产物,也是系统编码和测试的重要模型依据。
1.类的UML图示
在UML中,类使用包含类名,属性和方法且带有分隔线的长方形来表示;
例如定义一个Person类,包含属性name,age,拥有eating方法,则UML类图如下图示:
对应的java代码为:
public class Person {
private String name;
private int age;
public void eating() {
......
}
}
在UML类图中,类一般由三部分组成:
类名+属性+方法
(1) 第一部分是类名:每个类都必须有一个名字,类名是一个字符串。
(2) 第二部分是类的属性(Attributes):属性是指类的性质,即类的成员变量。一个类可以有任意多个属性,也可以没有属性。
UML规定属性的表示方式为:
可见性 名称:类型 [=缺省值]
其中:
- + public
- - private
- ~ package
- # protected
“可见性”表示该属性对于类外的元素而言是否可见,包括公有(public)、私有(private),友好的(friendly,代表package)和受保护(protected)三种,在类图中分别用符号+,-,~和#表示。
“名称”表示属性名,用一个字符串表示。
“类型”表示属性的数据类型,可以是基本数据类型,也可以是用户自定义类型。
“缺省值”是一个可选项,即属性的初始值。
(3) 第三部分是类的操作(Operations):操作是类的任意一个实例对象都可以使用的行为,是类的成员方法。
UML规定操作的表示方式为:
可见性 名称(参数列表) [ : 返回类型]
其中:
“可见性”的定义与属性的可见性定义相同。
“名称”即方法名,用一个字符串表示。
“参数列表”表示方法的参数,其语法与属性的定义相似,参数个数是任意的,多个参数之间用逗号“,”隔开。
“返回类型”是一个可选项,表示方法的返回值类型,依赖于具体的编程语言,可以是基本数据类型,也可以是用户自定义类型,还可以是空类型(void),如果是构造方法,则无返回类型。
2.类之间的关系
类不是孤立存在的,类与类之间存在各种关系包括:关联关系,聚合关系,组合关系,依赖关系,泛化关系。每种关系对应i不同的图示
泛化(Generalization)、实现(Realization)、关联(Association)(又分一般关联、聚合(Aggregation)、组合(Composition))、依赖(Dependency)
1. 关联关系
关联(Association)关系是类与类之间最常用的一种关系,它是一种结构化关系,用于表示一类对象与另一类对象之间有联系,如汽车和轮胎,班级和学生;
如在一个登录界面类LoginForm中包含一个JButton类型的注册按钮loginButton,它们之间可以表示为关联关系,代码实现时可以在LoginForm中定义一个名为loginButton的属性对象,其类型为JButton。如图1所示:
代码如下:
public class LoginForm {
private JButton loginButton; //定义为成员变量
……
}
public class JButton {
……
}
在UML中,关联关系通常又包含如下几种形式:
(1) 双向关联
默认情况下,关联是双向的。例如:顾客(Customer)购买商品(Product)并拥有商品,反之,卖出的商品总有某个顾客与之相关联。因此,Customer类和Product类之间具有双向关联关系,如图2所示:
public class Customer {
private Product[] products;
……
}
public class Product {
private Customer customer;
……
}
(2) 单向关联
类的关联关系也可以是单向的,单向关联用带箭头的实线表示。例如:顾客(Customer)拥有地址(Address),则Customer类与Address类具有单向关联关系,如图3所示:
public class Customer {
private Address address;
……
}
public class Address {
……
}
(3) 自关联
在系统中可能会存在一些类的属性对象类型为该类本身,这种特殊的关联关系称为自关联。例如:一个节点类(Node)的成员又是节点Node类型的对象,如图4所示:
代码:
public class Node {
private Node subNode;
……
}
(4) 多重性关联
多重性关联关系又称为重数性(Multiplicity)关联关系,表示两个关联对象在数量上的对应关系。在UML中,对象之间的多重性可以直接在关联直线上用一个数字或一个数字范围表示。 对象之间可以存在多种多重性关联关系,常见的多重性表示方式如表1所示:
表示方式 | 多重性说明 |
---|---|
1…1 | 表示另一个类的一个对象只与该类的一个对象有关系 |
0…* | 表示另一个类的一个对象与该类的零个或多个对象有关系 |
1…* | 表示另一个类的一个对象与该类的一个或多个对象有关系 |
0…1 | 表示另一个类的一个对象没有或只与该类的一个对象有关系 |
m…n | 表示另一个类的一个对象与该类最少m,最多n个对象有关系 (m≤n) |
例如:一个界面(Form)可以拥有零个或多个按钮(Button),但是一个按钮只能属于一个界面,因此,一个Form类的对象可以与零个或多个Button类的对象相关联,但一个Button类的对象只能与一个Form类的对象关联,如图5所示:
代码:
public class Form {
private Button[] buttons; //定义一个集合对象
……
}
public class Button {
……
}
(5) 聚合关系
聚合(Aggregation)关系表示整体与部分的关系。在聚合关系中,成员对象是整体对象的一部分,但是成员对象可以脱离整体对象独立存在。在UML中,聚合关系用带空心菱形的直线表示。例如:汽车发动机(Engine)是汽车(Car)的组成部分,但是汽车发动机可以独立存在,因此,汽车和发动机是聚合关系,如下图所示:
在代码实现聚合关系时,成员对象通常作为构造方法、Setter方法或业务方法的参数注入到整体对象中,上图对应的Java代码片段如下:
public class Car {
private Engine engine;
//构造注入
public Car(Engine engine) {
this.engine = engine;
}
//设值注入
public void setEngine(Engine engine) {
this.engine = engine;
}
……
}
public class Engine {
……
}
(6) 组合关系
组合(Composition)关系也表示类之间整体和部分的关系,但是在组合关系中整体对象可以控制成员对象的生命周期,一旦整体对象不存在,成员对象也将不存在,成员对象与整体对象之间具有同生共死的关系。在UML中,组合关系用带实心菱形的直线表示。例如:人的头(Head)与嘴巴(Mouth),嘴巴是头的组成部分之一,而且如果头没了,嘴巴也就没了,因此头和嘴巴是组合关系,如下图所示:
在代码实现组合关系时,通常在整体类的构造方法中直接实例化成员类,图7对应的Java代码片段如下:
public class Head {
private Mouth mouth;
public Head() {
mouth = new Mouth(); //实例化成员类
}
……
}
public class Mouth {
……
}
(7) 依赖关系
依赖(Dependency)关系是一种使用关系,特定事物的改变有可能会影响到使用该事物的其他事物,在需要表示一个事物使用另一个事物时使用依赖关系。大多数情况下,依赖关系体现在某个类的方法使用另一个类的对象作为参数。在UML中,依赖关系用带箭头的虚线表示,由依赖的一方指向被依赖的一方。例如:驾驶员开车,在Driver类的drive()方法中将Car类型的对象car作为一个参数传递,以便在drive()方法中能够调用car的move()方法,且驾驶员的drive()方法依赖车的move()方法,因此类Driver依赖类Car,如下图所示:
在系统实施阶段,依赖关系通常通过三种方式来实现,第一种也是最常用的一种方式是如图1所示的将一个类的对象作为另一个类中方法的参数,第二种方式是在一个类的方法中将另一个类的对象作为其局部变量,第三种方式是在一个类的方法中调用另一个类的静态方法。上图对应的Java代码片段如下:
public class Driver {
public void drive(Car car) {
car.move();
}
……
}
public class Car {
public void move() {
......
}
……
}
(8)泛化关系
泛化(Generalization)关系也就是继承关系,用于描述父类与子类之间的关系,父类又称作基类或超类,子类又称作派生类。在UML中,泛化关系用带空心三角形的直线来表示。在代码实现时,我们使用面向对象的继承机制来实现泛化关系,如在Java语言中使用extends关键字、在C++/C#中使用冒号“:”来实现。例如:Student类和Teacher类都是Person类的子类,Student类和Teacher类继承了Person类的属性和方法,Person类的属性包含姓名(name)和年龄(age),每一个Student和Teacher也都具有这两个属性,另外Student类增加了属性学号(studentNo),Teacher类增加了属性教师编号(teacherNo),Person类的方法包括行走move()和说话say(),Student类和Teacher类继承了这两个方法,而且Student类还新增方法study(),Teacher类还新增方法teach()。如图2所示:
代码如下:
//父类
public class Person {
protected String name;
protected int age;
public void move() {
……
}
public void say() {
……
}
}
//子类
public class Student extends Person {
private String studentNo;
public void study() {
……
}
}
//子类
public class Teacher extends Person {
private String teacherNo;
public void teach() {
……
}
}
(9)接口与实现关系
在很多面向对象语言中都引入了接口的概念,如Java、C#等,在接口中,通常没有属性,而且所有的操作都是抽象的,只有操作的声明,没有操作的实现。UML中用与类的表示法类似的方式表示接口,如图所示:
接口之间也可以有与类之间关系类似的继承关系和依赖关系,但是接口和类之间还存在一种实现(Realization)关系,在这种关系中,类实现了接口,类中的操作实现了接口中所声明的操作。在UML中,类与接口之间的实现关系用带空心三角形的虚线来表示。例如:定义了一个交通工具接口Vehicle,包含一个抽象操作move(),在类Ship和类Car中都实现了该move()操作,不过具体的实现细节将会不一样,如图所示:
实现关系在编程实现时,不同的面向对象语言也提供了不同的语法,如在Java语言中使用implements关键字,而在C++/C#中使用冒号“:”来实现。图4对应的Java代码片段如下:
public interface Vehicle {
public void move();
}
public class Ship implements Vehicle {
public void move() {
……
}
}
public class Car implements Vehicle {
public void move() {
……
}
}
关系总结:
关联:带箭头的实线(不同的关联关系表示有区别)
聚合:聚合关系用带空心菱形的直线表示
组合:组合关系用带实心菱形的直线表示
泛化:泛化关系用带空心三角形的直线来表示
依赖:依赖关系用带箭头的虚线表示,由依赖的一方指向被依赖的一方
各种关系的强弱顺序:
泛化 = 实现 > 组合 > 聚合 > 关联 > 依赖
下面这张UML图,比较形象地展示了各种类图关系:
20181008 update
继承和实现就不说了,稍微说说其他的:
依赖:指的是两个类之间的必须关系,比如 “人” 依赖 “手” 和 “脚”,这是必须的。
关联:一般用于你中有我,我中有你的关系,又或者,一对多或者一对一或者多对多的关系。
组合:类似依赖,但是,是一对多的关系。比如 鸟 需要 2 只翅膀。
聚合:可以想象成一个管理者管理很多相同的类。比如大雁数组管理大雁,那么,雁群就聚合和很多大雁。
来源:https://blog.csdn.net/LoveLion/article/details/7842898
http://thinkinjava.cn/2017/05/UML-类图总结图-建议保存/
更多学习:https://blog.csdn.net/LoveLion/article/details/17352343