ThreadLocal缺陷以及处理
分析过ThreadLocal源码源码的人都知道,ThreadLocal的设计的确巧妙,但是它也有一个缺陷:可能会引起内存泄漏;ThreadLocalMap中key维护着一个weakReference,它在下次GC之前会被清理,如果Value仍然保持着外部的强引用,该ThreadLocal没有再进行set,get或者remove操作,时间长了就可能导致OutOfMemoryError .
lucene中的类CloseableThreadLocal对ThreadLocal做了处理,优化了其缺陷.学习一下:
当执行CloseableThreadLocal.set(T)时,内部其实只是把值赋给内部的ThreadLocal对象,即执行ThreadLocal.set(new WeakReference(T)),将T包装成弱引用对象,目的就是当内存不足时,jvm可以回收此对象.
浙江引入一个新的问题:当前线程还存活着的时候,因为内存不足而回收了弱引用对象,这样会在下次调用get()时取不到值返回null,这是不可接受的.所以CloseableThreadLocal在内部还创建了一个私有的Map,WeakHashMap<Thread, T>,当线程只要存活时,则T就至少有一个引用存在,所以不会被提前回收。同时要注意另一个问题,要对WeakHashMap的操作使用synchronized做同步.
package org.apache.lucene.util;
import java.io.Closeable;
import java.lang.ref.WeakReference;
import java.util.Iterator;
import java.util.Map;
import java.util.WeakHashMap;
import java.util.concurrent.atomic.AtomicInteger;
/** Java's builtin ThreadLocal has a serious flaw:
* it can take an arbitrarily long amount of time to
* dereference the things you had stored in it, even once the
* ThreadLocal instance itself is no longer referenced.
* This is because there is single, master map stored for
* each thread, which all ThreadLocals share, and that
* master map only periodically purges "stale" entries.
*
* While not technically a memory leak, because eventually
* the memory will be reclaimed, it can take a long time
* and you can easily hit OutOfMemoryError because from the
* GC's standpoint the stale entries are not reclaimable.
*
* This class works around that, by only enrolling
* WeakReference values into the ThreadLocal, and
* separately holding a hard reference to each stored
* value. When you call {@link #close}, these hard
* references are cleared and then GC is freely able to
* reclaim space by objects stored in it.
*
* We can not rely on {@link ThreadLocal#remove()} as it
* only removes the value for the caller thread, whereas
* {@link #close} takes care of all
* threads. You should not call {@link #close} until all
* threads are done using the instance.
*
* @lucene.internal
*/
public class CloseableThreadLocal<T> implements Closeable {
//将值T用弱引用包裹,
private ThreadLocal<WeakReference<T>> t = new ThreadLocal<>();
// Use a WeakHashMap so that if a Thread exits and is
// GC'able, its entry may be removed:
//使用WeakHashMap,这样如果一个Thread退出并且是可GC,它Entry可能将被删除:
//亦即WeakHashMap<Thread, T>,当线程只要存活时,则T就至少有一个引用存在,所以不会被提前回收
private Map<Thread,T> hardRefs = new WeakHashMap<>();
// Increase this to decrease frequency of purging in get:
private static int PURGE_MULTIPLIER = 20;
// On each get or set we decrement this; when it hits 0 we
// purge. After purge, we set this to
// PURGE_MULTIPLIER * stillAliveCount. This keeps
// amortized cost of purging linear.
private final AtomicInteger countUntilPurge = new AtomicInteger(PURGE_MULTIPLIER);
protected T initialValue() {
return null;
}
public T get() {
WeakReference<T> weakRef = t.get();
if (weakRef == null) {
T iv = initialValue();
if (iv != null) {
set(iv);
return iv;
} else {
return null;
}
} else {
maybePurge();
return weakRef.get();
}
}
public void set(T object) {
t.set(new WeakReference<>(object));
//使用synchronized同步
synchronized(hardRefs) {
hardRefs.put(Thread.currentThread(), object);
maybePurge();
}
}
private void maybePurge() {
if (countUntilPurge.getAndDecrement() == 0) {
purge();
}
}
// Purge dead threads
private void purge() {
synchronized(hardRefs) {
int stillAliveCount = 0;
for (Iterator<Thread> it = hardRefs.keySet().iterator(); it.hasNext();) {
final Thread t = it.next();
if (!t.isAlive()) {
it.remove();
} else {
stillAliveCount++;
}
}
int nextCount = (1+stillAliveCount) * PURGE_MULTIPLIER;
if (nextCount <= 0) {
// defensive: int overflow!
nextCount = 1000000;
}
countUntilPurge.set(nextCount);
}
}
@Override
public void close() {
// Clear the hard refs; then, the only remaining refs to
// all values we were storing are weak (unless somewhere
// else is still using them) and so GC may reclaim them:
hardRefs = null;
// Take care of the current thread right now; others will be
// taken care of via the WeakReferences.
if (t != null) {
t.remove();
}
t = null;
}
}