编译安装 keepalived-2.0.16.tar.gz

一、下载安装包

1
wget https://www.keepalived.org/software/keepalived-2.0.16.tar.gz

 安装相关依赖

把所有的rpm包放在一个目录下。

1
rpm -Uvh --force --nodeps *rpm

、解压并安装

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
tar xf keepalived-2.0.16.tar.gz
 
cd keepalived-2.0.16
 
./configure --prefix=/usr/local/keepalived
 
make && make install
 
cp /root/keepalived-2.0.16/keepalived/etc/init.d/keepalived /etc/init.d/
 
cp /usr/local/keepalived/etc/sysconfig/keepalived /etc/sysconfig/
 
mkdir /etc/keepalived
 
cp /usr/local/keepalived/etc/keepalived/keepalived.conf /etc/keepalived/
 
cp /usr/local/keepalived/sbin/keepalived /usr/sbin/

 三、修改master配置文件

vim /etc/keepalived/keepalived.conf

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
! Configuration File for keepalived
 
global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER
}
 
vrrp_script check_nginx {
    script "/usr/local/nginx/sbin/check_nginx.sh"
}
 
vrrp_instance VI_1 {
    state MASTER
    interface ens33
    virtual_router_id 51 # VRRP 路由 ID实例,每个实例是唯一的
    priority 100    # 优先级,备服务器设置 90
    advert_int 1    # 指定VRRP 心跳包通告间隔时间,默认1秒
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.247.188/24
    }
    track_script {
        check_nginx
    }
}

 四、启动服务

1
2
systemctl start keepalived
systemctl enables keepalived

 五、检查vip

ip addr

 

posted @   西门运维  阅读(645)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· AI与.NET技术实操系列(六):基于图像分类模型对图像进行分类
点击右上角即可分享
微信分享提示