【hihoCoder第十七周】最近公共祖先·三

之前就写的是离线算法。思路就是先序一遍树,记录层数,然后高效RMQ就好。ST和线段树都能过。

以后有时间将之前的在线算法补上。

 

#include <bits/stdc++.h>

using namespace std;

#define MAXN 100005
#define MAXM 105
#define inf 0x7ffffff
int n;
struct Edge {
    int v, next;
} edge[MAXN];
int head[MAXN];
int e;

void addEdge(int u, int v) { //加边
    edge[e].v = v;
    edge[e].next = head[u];
    head[u] = e++;
}
int first[MAXN];//结点在搜索顺序数组中最先出现的位置(下标)
int occur[MAXN << 1]; //结点在出现的顺序数组重复的也要记录
int depth[MAXN << 1]; //结点在搜索树中的深度,与occur相对应
int dp_min[MAXN << 1][20]; //dp_min[i][j] 表示从第i个位置开始的2^j个元素中的最小值的下标
int m = 0; //不断记录出现的下标

void dfs(int u, int deep) {
    occur[++m] = u; //进入该点时进行记录
    depth[m] = deep;
    if(!first[u])
        first[u] = m;
    for(int i = head[u]; i + 1; i = edge[i].next) {
        dfs(edge[i].v, deep + 1);
        occur[++m] = u; //访问子树返回也要标记
        depth[m] = deep;
    }
}
void init() {
    memset(head, -1, sizeof(head));
    e = 0;
}

void RMQ_init(int num) {
    for(int i = 1; i <= num; i++)
        dp_min[i][0] = i; //注意dp_min存的不是最小值,而是最小值的下标
    for(int j = 1; j < 20; j++)
        for(int i = 1; i <= num; i++) {
            if(i + (1 << j) - 1 <= num) {
                dp_min[i][j] = depth[dp_min[i][j - 1]] < depth[dp_min[i + (1 << (j - 1))][j - 1]] ? dp_min[i][j - 1] : dp_min[i + (1 << (j - 1))][j - 1];
            }
        }
}

int RMQ_min(int a, int b) {
    int l = first[a], r = first[b]; //得到区间左右端点
    if(l > r) {
        int t = l;
        l = r;
        r = t;
    }
    int k = (int)(log(double(r - l + 1)) / log(2.0));
    int min_id = depth[dp_min[l][k]] < depth[dp_min[r - (1 << k) + 1][k]] ? dp_min[l][k] : dp_min[r - (1 << k) + 1][k]; //最小值下标
    return occur[min_id];//取得当前下标表示的结点
}

map<string, int> Hash_zh;
map<int, string> Hash_fa;

int main() {
    int t, a, b;
    init();
    m = 0;
    memset(first, 0, sizeof(first));
    bool in[MAXN];//记录结点有无入度
    memset(in, false, sizeof(in));
    int u = 0, v = 0, cnt = 1;
    string str_u, str_v;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) { //注意此题只有n-1条边
        cin >> str_u >> str_v;
        if (Hash_zh[str_u] == 0) {
            Hash_fa[cnt] = str_u;
            Hash_zh[str_u] = cnt ++;
        }
        if (Hash_zh[str_v] == 0) {
            Hash_fa[cnt] = str_v;
            Hash_zh[str_v] = cnt ++;
        }
        u = Hash_zh[str_u];
        v = Hash_zh[str_v];
        addEdge(u, v); //u->v单向
        //in[v] = true;
    }
    dfs(1, 0);
    RMQ_init(m);
    int op_n;
    scanf ("%d", &op_n);
    while (op_n --) {
        cin >> str_u >> str_v;
        if (str_u == str_v) {
            cout << str_u << endl;
            continue;
        }
        u = Hash_zh[str_u];
        v = Hash_zh[str_v];
        cout << Hash_fa[RMQ_min(u, v)] << endl;
    }

    return 0;
}

 

posted @ 2014-10-29 00:20  Desgard_Duan  阅读(173)  评论(0编辑  收藏  举报