KMP算法详解(Matrix67的经典讲解)
原文链接:http://www.matrix67.com/blog/archives/115
KMP算法详解
如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段。
我们这里说的KMP不是拿来放电
影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是
否包含B串)。比如,字符串A="I'm
matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白
语中的子串吗?”
解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为
m,那么这种方法的复杂度是O
(mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A=
"aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设
m<=n),即传说中的KMP算法。
之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取
了这三个人的名字的头一个字母。这时,或许你突然明白了AVL
树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名
字命名了,免得发生争议,比如“3x+1问题”。扯远了。
个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上
的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这
里,我换一种方法来解释KMP算法。
假如,A="abababaababacb",B="ababacb",我们来看看KMP
是怎么工作的。我们用两个指针i和j分别表示,A[i-j+
1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前
j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就
说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置
(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当
i=j=5时的情况。
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
由于P[5]=3,因此新的j=3:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 0 1 2 3 4 5 6 7
终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
这个过程的代码很短(真的很短),我们在这里给出:
1 j:=0; 2 for i:=1 to n do 3 begin 4 while (j>0) and (B[j+1]<>A[i]) do j:=P[j]; 5 if B[j+1]=A[i] then j:=j+1; 6 if j=m then 7 begin 8 writeln('Pattern occurs with shift ',i-m); 9 j:=P[j]; 10 end; 11 end;
最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环
。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。
现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
为
什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说
就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j
值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程
中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行
了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理
的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通
过P[1],P[2],…,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和
P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P
[5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4]
后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1
]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[
P[5] ]+1。这里想不通的话可以仔细看一下:
1 2 3 4 5 6 7
B = a b a b a c b
P = 0 0 1 2 3 ?
P[5]=3
是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]
得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为
B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:
1 P[1]:=0; 2 j:=0; 3 for i:=2 to m do 4 begin 5 while (j>0) and (B[j+1]<>B[i]) do j:=P[j]; 6 if B[j+1]=B[i] then j:=j+1; 7 P[i]:=j; 8 end;
最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。
串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。
昨天发现一个特别晕的事,知道怎么去掉BitComet的广告吗?把界面语言设成英文就行了。
还有,金山词霸和Dr.eye都可以去自杀了,Babylon素王道。