Leetcode 63. Unique Paths II

63. Unique Paths II

  • Total Accepted: 70691
  • Total Submissions:237311
  • Difficulty: Medium

 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

 

思路:
关于存储空间的优化,可以看姐妹题:Leetcode 62. Unique Paths

0<=i<m,0<=j<n:

1. obstacleGrid[i][j]==1,则(i,j)的路径数=0

2. obstacleGrid[i][j]==0时

2.1 j==0,(i,0)的路径数==(i-1,0)的路径数

2.2 i>0,(i,j)的路径数=(i-1,j)的路径数+(i,j-1)的路径数

 

代码:

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
 4         int i,j,m=obstacleGrid.size(),n=obstacleGrid[0].size();
 5         vector<int> cur(n);
 6         cur[0]=1;
 7         for(i=0;i<m;i++){
 8             for(j=0;j<n;j++){
 9                 if(obstacleGrid[i][j]){
10                     cur[j]=0;
11                 }
12                 else{
13                     if(j>0){
14                         cur[j]+=cur[j-1];
15                     }
16                 }
17             }
18         }
19         return cur[n-1];
20     }
21 };

 

posted @ 2016-07-07 21:52  Deribs4  阅读(172)  评论(0编辑  收藏  举报