pat04-树9. Path in a Heap (25)

04-树9. Path in a Heap (25)

时间限制
150 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

Insert a sequence of given numbers into an initially empty min-heap H. Then for any given index i, you are supposed to print the path from H[i] to the root.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N and M (<=1000) which are the size of the input sequence, and the number of indices to be checked, respectively. Given in the next line are the N integers in [-10000, 10000] which are supposed to be inserted into an initially empty min-heap. Finally in the last line, M indices are given.

Output Specification:

For each index i in the input, print in one line the numbers visited along the path from H[i] to the root of the heap. The numbers are separated by a space, and there must be no extra space at the end of the line.

Sample Input:
5 3
46 23 26 24 10
5 4 3
Sample Output:
24 23 10
46 23 10
26 10

提交代码

 

关于堆的操作(以大顶堆为例):

1.建堆。

 1 MaxHeap Create( int MaxSize )
 2 { /* 创建容量为MaxSize的空的最大堆 */
 3     MaxHeap H = malloc( sizeof( struct HeapStruct ) );
 4     H->Elements = malloc( (MaxSize+1) * sizeof(ElementType));
 5     H->Size = 0;
 6     H->Capacity = MaxSize;
 7     H->Elements[0] = MaxData;
 8 /* 定义“哨兵”为大于堆中所有可能元素的值,便于以后更快操作 */
 9     return H;
10 }

 

2.插入。

 1 void Insert( MaxHeap H, ElementType item )
 2 { /* 将元素item 插入最大堆H, 其中H->Elements[0]已经定义为哨兵 */
 3     int i;
 4     if ( IsFull(H) ) {
 5         printf("最大堆已满");
 6         return;
 7     }
 8     i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置 */
 9     for ( ; H->Elements[i/2] < item; i/=2 )
10         H->Elements[i] = H->Elements[i/2]; /* 向下过滤结点 */
11     H->Elements[i] = item; /* 将item 插入 */
12 } 

 

 

3.删除最大值。

 1 ElementType DeleteMax( MaxHeap H )
 2 { /* 从最大堆H中取出键值为最大的元素, 并删除一个结点 */
 3     int Parent, Child;
 4     ElementType MaxItem, temp;
 5     if ( IsEmpty(H) ) {
 6         printf("最大堆已为空");
 7         return;
 8     }
 9     MaxItem = H->Elements[1]; /* 取出根结点最大值 */
10 /* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
11     temp = H->Elements[H->Size--];
12     for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
13         Child = Parent * 2;
14         if( (Child!= H->Size) &&(H->Elements[Child] < H->Elements[Child+1]) )
15             Child++; /* Child指向左右子结点的较大者 */
16         if( temp >= H->Elements[Child] ) break;
17         else /* 移动temp元素到下一层 */
18         H->Elements[Parent] = H->Elements[Child];
19     }
20     H->Elements[Parent] = temp;
21     return MaxItem;
22 }

 

 

代码如下:

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<cstring>
 5 #include<queue>
 6 #include<vector>
 7 #include<map>
 8 #include<string>
 9 using namespace std;
10 int main(){
11     //freopen("D:\\INPUT.txt","r",stdin);
12     int n,m;
13     scanf("%d %d",&n,&m);
14     int i,j,temp,size=0;
15     int *minheap=new int[n+1];
16     for(i=1;i<=n;i++){
17         scanf("%d",&temp);
18         minheap[++size]=temp;
19         for(j=size;j>=2;j/=2){
20             if(temp<minheap[j/2]){
21                 minheap[j]=minheap[j/2];
22             }
23             else{
24                 break;
25             }
26         }
27         minheap[j]=temp;
28     }
29     for(i=0;i<m;i++){
30         scanf("%d",&temp);
31         while(temp){
32             printf("%d",minheap[temp]);
33             temp==1?printf("\n"):printf(" ");
34             temp/=2;
35         }
36     }
37     return 0;
38 }

 

posted @ 2015-08-19 15:00  Deribs4  阅读(152)  评论(0编辑  收藏  举报