hdu1028
Problem A
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 5 Accepted Submission(s) : 4
"The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2]+a[3]+...+a[m]; a[i]>0,1<=m<=N; My question is how many different equations you can find for a given N. For example, assume N is 4, we can find: 4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + 1 + 1; 4 = 1 + 1 + 1 + 1; so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
整数划分的递归算法:
int split(int n, int m)
{
if(n < 1 || m < 1)
return 0;
if(n == 1 || m == 1)
return 1;
if(n < m)
return split(n, n);
if(n == m)
return (split(n, m - 1) + 1);
if(n > m)
return (split(n, m - 1) + split((n - m), m));
}
递归算法易于理解。但是由于多次重复计算,会很浪费时间。所以需要转化成非递归的算法。如下:
首先,我们引进一个小小概念来方便描述吧,record[n][m]是把自然数划划分成所有元素不大于m的分法,例如:
当n=4,m=1时,要求所有的元素都比m小,所以划分法只有1种:{1,1,1,1};
当n=4,m=2时,。。。。。。。。。。。。。。。。只有3种{1,1,1,1},{2,1,1},{2,2};
当n=4,m=3时,。。。。。。。。。。。。。。。。只有4种{1,1,1,1},{2,1,1},{2,2},{3,1};
当n=4,m=5时,。。。。。。。。。。。。。。。。只有5种{1,1,1,1},{2,1,1},{2,2},{3,1},{4};
从上面我们可以发现:当n==1||m==1时,只有一种分法;
当n<m时,由于分法不可能出现负数,所以record[n][m]=record[n][n];
当n==m时,那么就得分析是否要分出m这一个数,如果要分那就只有一种{m},要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=1+record[n][n-1];
当n>m时,那么就得分析是否要分出m这一个数,如果要分那就{{m},{x1,x2,x3..}}时n-m的分法record[n-m][m],要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=record[n-m][m]+record[n][m-1];
代码:
- #include<iostream>
- using namespace std;
- int dp[150][150]={0};
- int main()
- {
- int i,j;
- for(i=1;i<=121;i++)
- dp[1][i]=dp[i][1]=1;
- for(i=2;i<121;i++)
- {
- for(j=2;j<=121;j++)
- {
- if(i<j)
- dp[i][j]=dp[i][i];
- else if(i==j)
- dp[i][j]=1+dp[i][j-1];
- else if(i>j)
- dp[i][j]=dp[i-j][j]+dp[i][j-1];
- }
- }
- int n;
- while(cin>>n)
- cout<<dp[n][n]<<endl;
- return 0;
- }
- #include <iostream>
- using namespace std;
- const int lmax=10000;
- int c1[lmax],c2[lmax];
- int main()
- {
- int n,i,j,k;
- while (cin>>n)
- {
- for (i=0;i<=n;i++)
- {
- c1[i]=0;
- c2[i]=0;
- }
- for(i=0;i<=n;i++)
- c1[i]=1;
- for(i=2;i<=n;i++)
- {
- for(j=0;j<=n;j++)
- for(k=0;k+j<=n;k+=i)
- {
- c2[j+k]+=c1[j];
- }
- for (j=0;j<=n;j++)
- {
- c1[j]=c2[j];
- c2[j]=0;
- }
- }
- cout<<c1[n]<<endl;
- }
- return 0;
- }