sklearn.preprocessing.LabelEncoder
sklearn.preprocessing.LabelEncoder():标准化标签,将标签值统一转换成range(标签值个数-1)范围内
以数字标签为例:
[python] view plain copy
In [1]: from sklearn import preprocessing
...: le = preprocessing.LabelEncoder()
...: le.fit([1,2,2,6,3])
...:
Out[1]: LabelEncoder()
获取标签值
[python] view plain copy
In [2]: le.classes_
Out[2]: array([1, 2, 3, 6])
将标签值标准化
[python] view plain copy
In [3]: le.transform([1,1,3,6,2])
Out[3]: array([0, 0, 2, 3, 1], dtype=int64)
将标准化的标签值反转
[python] view plain copy
In [4]: le.inverse_transform([0, 0, 2, 3, 1])
Out[4]: array([1, 1, 3, 6, 2])
非数字型标签值标准化:
[python] view plain copy
In [5]: from sklearn import preprocessing
...: le =preprocessing.LabelEncoder()
...: le.fit(["paris", "paris", "tokyo", "amsterdam"])
...: print('标签个数:%s'% le.classes_)
...: print('标签值标准化:%s' % le.transform(["tokyo", "tokyo", "paris"]))
...: print('标准化标签值反转:%s' % le.inverse_transform([2, 2, 1]))
...:
标签个数:['amsterdam' 'paris' 'tokyo']
标签值标准化:[2 2 1]
标准化标签值反转:['tokyo' 'tokyo' 'paris']