ACwing 1214. 波动数列 (构造+dp)
题目链接:传送门
题目思路:由于初值是不定的,因此很难直接去求01背包,况且s范围是 1e-9 ~ 1e9;
#include<bits/stdc++.h> /* #include<cstdio> #include<cmath> #include<cstring> #include<vector> #include<cctype> #include<queue> #include<algorithm> #include<map> #include<set> */ #pragma GCC optimize(2) using namespace std; typedef long long LL; typedef unsigned long long uLL; typedef pair<int,int> pii; typedef pair<LL,LL> pLL; typedef pair<double,double> pdd; const int N=2e3+5; const int M=8e5+5; const int inf=0x3f3f3f3f; const LL mod=1e8+7; const double eps=1e-5; const long double pi=acos(-1.0L); #define ls (i<<1) #define rs (i<<1|1) #define fi first #define se second #define pb push_back #define eb emplace_back #define mk make_pair #define mem(a,b) memset(a,b,sizeof(a)) LL read() { LL x=0,t=1; char ch; while(!isdigit(ch=getchar())) if(ch=='-') t=-1; while(isdigit(ch)){ x=10*x+ch-'0'; ch=getchar(); } return x*t; } int main() { //这到题不存在首项的具体值,如果直接构造 i-1 -> i ,dp是不能初始化的; //因此要寻找其他等价关系,通常可以给首项设置一个未知数,然后通过同余关系确定答案。 LL n=read(),s=read(),a=read(),b=read(); dp[0][0]=1; for(int i=1;i<n;i++) for(int j=0;j<n;j++) dp[i][j]=(dp[i-1][((j-a*(n-i))%n+n)%n]+dp[i-1][((j+b*(n-i)%n)%n+n)%n])%mod; //printf("%lld\n",s%n); printf("%lld\n",dp[n-1][(s%n+n)%n]); return 0; }