摘要: # 机器学习_概述 # 数据类型:连续性,离散型 # 算法分类 # 监督学习(特征值+目标值):(预测) # 分类: k近邻算法 贝叶斯 决策树与随机森林 逻辑递归 神经网络 # 回归: 线性回归 岭回归 # 标注: 隐马尔可夫模型(不做要求) # 无监督学习(只有特征值) # 聚类: k-means # 机器学习流程 # 建立模型:(根据数据类型划分应用种类) 模型:算法+数据 # 1,获取数据 阅读全文
posted @ 2019-09-27 16:10 下雨天,真好 阅读(154) 评论(0) 推荐(0) 编辑
摘要: # 特征处理 # 特征预处理:通过统计方法将数据转换为算法需要的数据 # 数值型数据:标准缩放 # 规依法,标准化(常用,适用于当前大数据),缺失值处理(删除,填补中位数平均数,通常按照列填补) # 类别型数据:ont-hot编码 # 时间类型:时间的切分 # 特征处理API sklearn.preprocessing # ==========================... 阅读全文
posted @ 2019-09-27 14:12 下雨天,真好 阅读(306) 评论(0) 推荐(0) 编辑