条件过滤检索

背景介绍

在大多数业务场景中,单纯使用向量进行相似性检索并无法满足业务需求,通常需要在满足特定过滤条件、或者特定的"标签"的前提下,再进行相似性检索。

向量检索服务DashVector支持条件过滤和向量相似性检索相结合,在精确满足过滤条件的前提下进行高效的向量检索。

条件过滤检索示例

说明

  1. 需要使用您的api-key替换示例中的 YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例需要参考新建Collection-使用示例

插入带有Field的数据

Python

import dashvector
import numpy as np

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
collection = client.get(name='quickstart')

ret = collection.insert([
    ('1', np.random.rand(4), {'name':'zhangsan', 'age': 10, 'male': True, 'weight': 35.0}),
    ('2', np.random.rand(4), {'name':'lisi', 'age': 20, 'male': False, 'weight': 45.0}),
    ('3', np.random.rand(4), {'name':'wangwu', 'age': 30, 'male': True, 'weight': 75.0}),
    ('4', np.random.rand(4), {'name':'zhaoliu', 'age': 5, 'male': False, 'weight': 18.0}),
    ('5', np.random.rand(4), {'name':'sunqi', 'age': 40, 'male': True, 'weight': 70.0})
])
assert ret

说明

在新建Collection-使用示例中,创建了名称为quickstart的Collection,该Collection定义了3个Field({'name': str, 'weight': float, 'age': int})。DashVector具有Schema Free的特性,因此可以在插入Do时,随意指定创建Collection时未定义的Field,如上述示例中的maleField。

通过filter进行条件过滤检索

Python

import dashvector

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
collection = client.get(name='quickstart')

# 要求年龄(age)大于18,并且体重(weight)大于65.0的男性(male=true)
docs = collection.query(
  [0.1, 0.1, 0.1, 0.1],
  topk=10,
  filter = 'age > 18 and weight > 65.0 and male = true'
)
print(docs)

DashVector支持的数据类型

当前DashVector支持Python的4种基础数据类型:

  • str

  • float

  • int

  • bool

重要

Python的int类型可表达无限大小的整数,当前DashVector仅支持32位整数,范围为-2,147,483,648~2,147,483,647,需要用户自行保证数据未溢出。

比较运算符

通过Field 比较运算符 常量的组合生成比较表达式,说明及示例如下:

成员运算符

通过Field 成员运算符 常量的组合生成比较表达式,说明及示例如下:

字符串运算符

通过Field 字符串运算符 常量的组合生成匹配表达式,说明及示例如下:

逻辑运算符

逻辑运算符用于组合多个表达式。

说明

可通过括号()组合逻辑运算符,()拥有更高优先级,如:expr1 and (expr2 or expr3),会优先计算(expr2 or expr3)

posted @ 2024-11-07 10:37  DashVector  阅读(3)  评论(0编辑  收藏  举报