MapReduce实战(四)倒排索引的实现
需求:
以上三个文件,用MapReduce进行处理,最终输出以下格式:
hello c.txt-->2 b.txt-->2 a.txt-->3
jerry c.txt-->1 b.txt-->3 a.txt-->1
tom c.txt-->1 b.txt-->1 a.txt-->2
思考:
我们需要进行两个步骤:
1.就是之前的统计单词个数的练习,只不过现在需要加上文件名而已。得到如下效果
hello-->a.txt 3
hello-->b.txt 2
hello-->c.txt 2
jerry-->a.txt 1
jerry-->b.txt 3
jerry-->c.txt 1
tom-->a.txt 2
tom-->b.txt 1
tom-->c.txt 1
2.将key由hello-->a.txt这种形式转化成hello这种形式,然后进行分组。得到如下效果:
hello c.txt-->2 b.txt-->2 a.txt-->3
jerry c.txt-->1 b.txt-->3 a.txt-->1
tom c.txt-->1 b.txt-->1 a.txt-->2
文件目录如下:
InverseIndexStepOne.java:
package cn.darrenchan.hadoop.mr.ii; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class InverseIndexStepOne { public static class StepOneMapper extends Mapper<LongWritable, Text, Text, LongWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 拿到一行数据 String line = value.toString(); // 切分出各个单词 String[] fields = line.split("\t"); // 获取这一行数据所在的文件切片 FileSplit inputSplit = (FileSplit) context.getInputSplit(); // 从文件切片中获取文件名 String fileName = inputSplit.getPath().getName(); for (String field : fields) { // 封装kv输出 , k : hello-->a.txt v: 1 context.write(new Text(field + "-->" + fileName), new LongWritable(1)); } } } public static class StepOneReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { int count = 0; for (LongWritable value : values) { count += value.get(); } // <hello-->a.txt,{1,1,1....}> context.write(key, new LongWritable(count)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(InverseIndexStepOne.class); job.setMapperClass(StepOneMapper.class); job.setReducerClass(StepOneReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); //检查一下参数所指定的输出路径是否存在,如果已存在,先删除 Path outputPath = new Path(args[1]); FileSystem fileSystem = FileSystem.get(conf); if (fileSystem.exists(outputPath)) { fileSystem.delete(outputPath, true); } FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, outputPath); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
InverseIndexStepTwo.java:
package cn.darrenchan.hadoop.mr.ii; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class InverseIndexStepTwo { // k: 行起始偏移量 v: {hello-->a.txt 3} // map输出的结果是这个形式 : <hello,a.txt-->3> public static class StepTwoMapper extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("-->"); String[] strings = fields[1].split("\t"); context.write(new Text(fields[0]), new Text(strings[0] + "-->" + strings[1])); } } // 拿到的数据 <hello,{a.txt-->3,b.txt-->2,c.txt-->1}> // 输出的结果就是 k: hello v: a.txt-->3 b.txt-->2 c.txt-->1 public static class StepTwoReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { String result = " "; for (Text value : values) { result += value + " "; } context.write(key, new Text(result)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(InverseIndexStepTwo.class); job.setMapperClass(StepTwoMapper.class); job.setReducerClass(StepTwoReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); // 检查一下参数所指定的输出路径是否存在,如果已存在,先删除 Path outputPath = new Path(args[1]); FileSystem fileSystem = FileSystem.get(conf); if (fileSystem.exists(outputPath)) { fileSystem.delete(outputPath, true); } FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, outputPath); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
首先将三个文件传到HDFS的/ii/srcdata目录下面,执行指令:
hadoop jar ii.jar cn.darrenchan.hadoop.mr.ii.InverseIndexStepOne /ii/srcdata /ii/output1
打印运行信息:
17/03/01 17:55:38 INFO client.RMProxy: Connecting to ResourceManager at weekend110/192.168.230.134:8032
17/03/01 17:55:38 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/03/01 17:55:39 INFO input.FileInputFormat: Total input paths to process : 3
17/03/01 17:55:39 INFO mapreduce.JobSubmitter: number of splits:3
17/03/01 17:55:40 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488372977056_0001
17/03/01 17:55:41 INFO impl.YarnClientImpl: Submitted application application_1488372977056_0001
17/03/01 17:55:41 INFO mapreduce.Job: The url to track the job: http://weekend110:8088/proxy/application_1488372977056_0001/
17/03/01 17:55:41 INFO mapreduce.Job: Running job: job_1488372977056_0001
17/03/01 17:55:52 INFO mapreduce.Job: Job job_1488372977056_0001 running in uber mode : false
17/03/01 17:55:52 INFO mapreduce.Job: map 0% reduce 0%
17/03/01 17:56:11 INFO mapreduce.Job: map 33% reduce 0%
17/03/01 17:56:12 INFO mapreduce.Job: map 100% reduce 0%
17/03/01 17:56:18 INFO mapreduce.Job: map 100% reduce 100%
17/03/01 17:56:18 INFO mapreduce.Job: Job job_1488372977056_0001 completed successfully
17/03/01 17:56:18 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=382
FILE: Number of bytes written=372665
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=402
HDFS: Number of bytes written=138
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=3
Launched reduce tasks=1
Data-local map tasks=3
Total time spent by all maps in occupied slots (ms)=51196
Total time spent by all reduces in occupied slots (ms)=3018
Total time spent by all map tasks (ms)=51196
Total time spent by all reduce tasks (ms)=3018
Total vcore-seconds taken by all map tasks=51196
Total vcore-seconds taken by all reduce tasks=3018
Total megabyte-seconds taken by all map tasks=52424704
Total megabyte-seconds taken by all reduce tasks=3090432
Map-Reduce Framework
Map input records=8
Map output records=16
Map output bytes=344
Map output materialized bytes=394
Input split bytes=312
Combine input records=0
Combine output records=0
Reduce input groups=9
Reduce shuffle bytes=394
Reduce input records=16
Reduce output records=9
Spilled Records=32
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=1077
CPU time spent (ms)=6740
Physical memory (bytes) snapshot=538701824
Virtual memory (bytes) snapshot=1450766336
Total committed heap usage (bytes)=379793408
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=90
File Output Format Counters
Bytes Written=138
运行结果如下:
hello-->a.txt 3
hello-->b.txt 2
hello-->c.txt 2
jerry-->a.txt 1
jerry-->b.txt 3
jerry-->c.txt 1
tom-->a.txt 2
tom-->b.txt 1
tom-->c.txt 1
执行指令:
hadoop jar ii.jar cn.darrenchan.hadoop.mr.ii.InverseIndexStepTwo /ii/output1 /ii/output2
打印运行信息:
17/03/01 18:03:31 INFO client.RMProxy: Connecting to ResourceManager at weekend110/192.168.230.134:8032
17/03/01 18:03:31 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/03/01 18:03:31 INFO input.FileInputFormat: Total input paths to process : 1
17/03/01 18:03:31 INFO mapreduce.JobSubmitter: number of splits:1
17/03/01 18:03:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488372977056_0003
17/03/01 18:03:32 INFO impl.YarnClientImpl: Submitted application application_1488372977056_0003
17/03/01 18:03:32 INFO mapreduce.Job: The url to track the job: http://weekend110:8088/proxy/application_1488372977056_0003/
17/03/01 18:03:32 INFO mapreduce.Job: Running job: job_1488372977056_0003
17/03/01 18:03:38 INFO mapreduce.Job: Job job_1488372977056_0003 running in uber mode : false
17/03/01 18:03:38 INFO mapreduce.Job: map 0% reduce 0%
17/03/01 18:03:43 INFO mapreduce.Job: map 100% reduce 0%
17/03/01 18:03:47 INFO mapreduce.Job: map 100% reduce 100%
17/03/01 18:03:48 INFO mapreduce.Job: Job job_1488372977056_0003 completed successfully
17/03/01 18:03:48 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=162
FILE: Number of bytes written=185553
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=249
HDFS: Number of bytes written=112
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2605
Total time spent by all reduces in occupied slots (ms)=2725
Total time spent by all map tasks (ms)=2605
Total time spent by all reduce tasks (ms)=2725
Total vcore-seconds taken by all map tasks=2605
Total vcore-seconds taken by all reduce tasks=2725
Total megabyte-seconds taken by all map tasks=2667520
Total megabyte-seconds taken by all reduce tasks=2790400
Map-Reduce Framework
Map input records=9
Map output records=9
Map output bytes=138
Map output materialized bytes=162
Input split bytes=111
Combine input records=0
Combine output records=0
Reduce input groups=3
Reduce shuffle bytes=162
Reduce input records=9
Reduce output records=3
Spilled Records=18
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=138
CPU time spent (ms)=820
Physical memory (bytes) snapshot=218480640
Virtual memory (bytes) snapshot=726454272
Total committed heap usage (bytes)=137433088
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=138
File Output Format Counters
Bytes Written=112
运行结果如下:
hello c.txt-->2 b.txt-->2 a.txt-->3
jerry c.txt-->1 b.txt-->3 a.txt-->1
tom c.txt-->1 b.txt-->1 a.txt-->2