Hive3.1.2源码编译兼容Spark3.1.2 Hive on Spark

在使用hive3.1.2和spark3.1.2配置hive on spark的时候,发现官方下载的hive3.1.2和spark3.1.2不兼容,hive3.1.2对应的版本是spark2.3.0,而spark3.1.2对应的hadoop版本是hadoop3.2.0。

所以,如果想要使用高版本的hive和hadoop,我们要重新编译hive,兼容spark3.1.2。

1. 环境准备

这里在Mac编译,电脑环境需要Java、Maven、idea。

注:在Windows 10中无法编译,没有.bat文件,可以选择在虚拟机中,安装一台带图形化界面的CentOS7。

提前下载好hive3.1.2源码,并用idea打开源码。

https://github.com/gitlbo/hive/tree/3.1.2

这里使用的是GitHub上的源码,因为集群中所安装的Hadoop-3.3.0中和Hive-3.1.2中都包含guava的依赖,Hadoop-3.3.0中的版本为guava-27.0-jre,而官网下载的Hive-3.1.2中的版本为guava-19.0。

由于Hive运行时会加载Hadoop依赖,故会出现依赖冲突的问题。如果直接将官网下载的源码包中pom.xml文件中的guava版本修改为27.0-jre,编译会报错,所以这里直接选择用GitHub上的源码。

 注意:下载完依赖后,pom文件会报很多处错误,这个不能决定是否是错误。需要使用官方提供的编译打包方式去检验才行。

2. 打包测试

参考官方:https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-BuildingHivefromSource

执行编译命令
打开terminal终端,使用如下命令进行进行打包,检验编译环境是否正常

mvn clean package -Pdist -DskipTests -Dmaven.javadoc.skip=true

3. 可能会遇到的问题

如果没有遇到,就直接跳过。

maven打包报错

[ERROR] Failed to execute goal on project hive-upgrade-acid: Could not resolve dependencies for project org.apache.hive:hive-upgrade-acid:jar:3.1.2: Failure to find org.pentaho:pentaho-aggdesigner-algorithm:jar:5.1.5-jhyde in http://maven.aliyun.com/nexus/content/groups/public/ was cached in the local repository, resolution will not be reattempted until the update interval of alimaven has elapsed or updates are forced -> [Help 1]

3.1 解决jar缺失

pentaho-aggdesigner-algorithm-5.1.5-jhyde.jar缺失

方法一

在maven的setting文件中添加,增加2个阿里云仓库地址

<mirror>
    <id>aliyunmaven</id>
    <mirrorOf>*</mirrorOf>
    <name>spring-plugin</name>
    <url>https://maven.aliyun.com/repository/spring-plugin</url>
 </mirror>

 <mirror> 
    <id>repo2</id> 
    <name>Mirror from Maven Repo2</name> 
    <url>https://repo.spring.io/plugins-release/</url> 
    <mirrorOf>central</mirrorOf> 
 </mirror>

重新执行打包命令

方法二

手动下载jar包,并上传到目标目录

jar包下载地址

https://public.nexus.pentaho.org/repository/proxy-public-3rd-party-release/org/pentaho/pentaho-aggdesigner-algorithm/5.1.5-jhyde/pentaho-aggdesigner-algorithm-5.1.5-jhyde.jar

重新执行打包命令

这两种方法多试几次,一般就能解决了。

3.2 error in opening zip file

若出现读取\XX\XXX..jar时出错; error in opening zip file,找到对应目录,删除jar包,重新下载就好了

3.3 After correcting the problems, you can resume the build with the command

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-javadoc-plugin:2.4:javadoc (resourcesdoc.xml) on project hive-webhcat: An error has occurred in JavaDocs report generation:Unable to find javadoc command: The environment variable JAVA_HOME is not correctly set. -> [Help 1]
[ERROR] 
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR] 
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR] 
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR]   mvn <args> -rf :hive-webhcat

没有配置JAVA_HOME导致的,配置之后还是不行,记得重启一下idea。

也有可能是之前使用的是USE JAVA_HOME,修改成项目的就可以成功build project了。

 编译成功提示:

[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary for Hive 3.1.2:
[INFO] 
[INFO] Hive Upgrade Acid .................................. SUCCESS [  5.537 s]
[INFO] Hive ............................................... SUCCESS [  0.232 s]
[INFO] Hive Classifications ............................... SUCCESS [  0.393 s]
[INFO] Hive Shims Common .................................. SUCCESS [  1.809 s]
[INFO] Hive Shims 0.23 .................................... SUCCESS [  2.859 s]
[INFO] Hive Shims Scheduler ............................... SUCCESS [  1.573 s]
[INFO] Hive Shims ......................................... SUCCESS [  1.018 s]
[INFO] Hive Common ........................................ SUCCESS [  7.054 s]
[INFO] Hive Service RPC ................................... SUCCESS [  2.797 s]
[INFO] Hive Serde ......................................... SUCCESS [  4.794 s]
[INFO] Hive Standalone Metastore .......................... SUCCESS [ 27.884 s]
[INFO] Hive Metastore ..................................... SUCCESS [  2.779 s]
[INFO] Hive Vector-Code-Gen Utilities ..................... SUCCESS [  0.237 s]
[INFO] Hive Llap Common ................................... SUCCESS [  3.263 s]
[INFO] Hive Llap Client ................................... SUCCESS [  2.194 s]
[INFO] Hive Llap Tez ...................................... SUCCESS [  2.383 s]
[INFO] Hive Spark Remote Client ........................... SUCCESS [  2.915 s]
[INFO] Hive Query Language ................................ SUCCESS [ 52.792 s]
[INFO] Hive Llap Server ................................... SUCCESS [  5.707 s]
[INFO] Hive Service ....................................... SUCCESS [  5.299 s]
[INFO] Hive Accumulo Handler .............................. SUCCESS [  3.621 s]
[INFO] Hive JDBC .......................................... SUCCESS [ 18.186 s]
[INFO] Hive Beeline ....................................... SUCCESS [  3.277 s]
[INFO] Hive CLI ........................................... SUCCESS [  2.593 s]
[INFO] Hive Contrib ....................................... SUCCESS [  2.074 s]
[INFO] Hive Druid Handler ................................. SUCCESS [ 13.076 s]
[INFO] Hive HBase Handler ................................. SUCCESS [  4.767 s]
[INFO] Hive JDBC Handler .................................. SUCCESS [  2.537 s]
[INFO] Hive HCatalog ...................................... SUCCESS [  0.439 s]
[INFO] Hive HCatalog Core ................................. SUCCESS [  4.441 s]
[INFO] Hive HCatalog Pig Adapter .......................... SUCCESS [  2.914 s]
[INFO] Hive HCatalog Server Extensions .................... SUCCESS [  2.732 s]
[INFO] Hive HCatalog Webhcat Java Client .................. SUCCESS [  2.935 s]
[INFO] Hive HCatalog Webhcat .............................. SUCCESS [  5.959 s]
[INFO] Hive HCatalog Streaming ............................ SUCCESS [  3.133 s]
[INFO] Hive HPL/SQL ....................................... SUCCESS [  4.280 s]
[INFO] Hive Streaming ..................................... SUCCESS [  2.540 s]
[INFO] Hive Llap External Client .......................... SUCCESS [  2.564 s]
[INFO] Hive Shims Aggregator .............................. SUCCESS [  0.051 s]
[INFO] Hive Kryo Registrator .............................. SUCCESS [  2.208 s]
[INFO] Hive TestUtils ..................................... SUCCESS [  0.156 s]
[INFO] Hive Packaging ..................................... SUCCESS [ 55.564 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  04:33 min
[INFO] Finished at: 2021-06-12T23:32:27+08:00
[INFO] ------------------------------------------------------------------------

 编译成功后,可以在**/packaging/target目录下查看编译完成的安装包。

 

 4. 整合Spark3.1.2

4.1 修改pom.xml文件

将pom.xml201行的

    <spark.version>3.0.0</spark.version>

改为

    <spark.version>3.1.2</spark.version> 

4.2 重新编译

mvn clean package -Pdist -DskipTests -Dmaven.javadoc.skip=true

基本等上几分钟,就能编译完成。

若使用官网提供的3.1.2版本编译,这里会报错,需要修改源码,GitHub上的源码,是已经修改过的。

 5. Hive on Spark 配置

以下出现的路径,请根据自己的环境修改。

5.1 解压spark-3.1.2-bin-without-hive.tgz

[bigdata@bigdata-node00001 software]$ tar -xzf spark-3.1.2-bin-without-hive.tgz -C /opt/module
[bigdata@bigdata-node00001 software]$ cd /opt/module/
[bigdata@bigdata-node00001 module]$ mv spark-3.1.2-bin-without-hive/ spark-3.1.2

5.2 配置SPARK_HOME环境变量

[bigdata@bigdata-node00001 module]$ sudo vim /etc/profile.d/my_env.sh

添加如下内容:

#SPARK_HOME
export SPARK_HOME=/opt/module/spark-3.1.2
export PATH=$PATH:$SPARK_HOME/bin

source使其生效

[bigdata@bigdata-node00001 module]$ source /etc/profile.d/my_env.sh

注:my_env.sh是自定义的配置文件,系统默认的/etc/profile。

5.3 配置spark运行环境

[bigdata@bigdata-node00001 module]$ cd spark-3.1.2/
[bigdata@bigdata-node00001 spark-3.1.2]$ cp conf/spark-env.sh.template conf/spark-env.sh
[bigdata@bigdata-node00001 spark-3.1.2]$ vim conf/spark-env.sh

添加如下内容:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

5.4 连接sparkjar包到hive,如果hive中已存在则跳过

主要包含3个文件:scala-library-2.12.10.jar、spark-core_2.12-3.1.2.jar、spark-network-common_2.12-3.1.2.jar。

软连接请用ln -s 命令,我这里是直接复制到对应的路径下。

[bigdata@bigdata-node00001 software]$ cp /opt/module/spark-3.1.2/jars/scala-library-2.12.10.jar /opt/module/hive-3.1.2/lib/
[bigdata@bigdata-node00001 software]$ cp /opt/module/spark-3.1.2/jars/spark-core_2.12-3.1.2.jar /opt/module/hive-3.1.2/lib/
[bigdata@bigdata-node00001 software]$ cp /opt/module/spark-3.1.2/jars/spark-network-common_2.12-3.1.2.jar /opt/module/hive-3.1.2/lib/

5.5 新建spark配置文件

bigdata@bigdata-node00001 software]$ vim /opt/module/hive-3.1.2/conf/spark-defaults.conf

添加如下内容:

spark.master                                    yarn
spark.eventLog.enabled                          true
spark.eventLog.dir                              hdfs://node00001:8020/spark-history
spark.driver.memory                             4g
spark.executor.memory                           4g

注:具体参数根据自身集群环境作相应的调整。

5.6 在HDFS创建如下路径

hadoop fs -mkdir /spark-history

5.7 上传Spark依赖到HDFS

[bigdata@bigdata-node00001 software]$ hadoop fs -mkdir /spark-jars
[bigdata@bigdata-node00001 software]$ hadoop fs -put /opt/module/spark-3.1.2/jars/* /spark-jars

5.8 修改hive-site.xml

    <!--Spark依赖位置-->
    <property>
        <name>spark.yarn.jars</name>
        <value>hdfs://node00001:8020/spark-jars/*</value>
    </property>
    <!--Hive执行引擎-->
    <property>
        <name>hive.execution.engine</name>
        <value>spark</value>
    </property>
    <!--Hive和spark连接超时时间-->
    <property>
        <name>hive.spark.client.connect.timeout</name>
        <value>10000ms</value>
    </property>

6. 测试Hive on Spark

6.1 启动环境

启动zookeeper,hadoop集群,hive,启动hive客户端

6.2 插入测试数据

创建一张测试表

hive (default)> create external table student(id int, name string) location '/student';

插入一条测试数据

hive (default)> insert into table student values(1,'abc');

执行结果

Query ID = bigdata_20210613144232_7bafd4ac-0552-4d67-b53c-dc04b2a6f45c
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Running with YARN Application = application_1623236770182_0016
Kill Command = /opt/module/hadoop-3.3.0/bin/yarn application -kill application_1623236770182_0016
Hive on Spark Session Web UI URL: http://node00001:39673

Query Hive on Spark job[0] stages: [0, 1]
Spark job[0] status = RUNNING
--------------------------------------------------------------------------------------
          STAGES   ATTEMPT        STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED
--------------------------------------------------------------------------------------
Stage-0 ........         0      FINISHED      1          1        0        0       0
Stage-1 ........         0      FINISHED      1          1        0        0       0
--------------------------------------------------------------------------------------
STAGES: 02/02    [==========================>>] 100%  ELAPSED TIME: 5.05 s
--------------------------------------------------------------------------------------
Spark job[0] finished successfully in 5.05 second(s)
Loading data to table default.student
OK
Time taken: 21.836 seconds

 

posted @ 2021-06-15 10:35  D-Arlin  阅读(7688)  评论(11编辑  收藏  举报