hdu 1394 Minimum Inversion Number(逆序数对) : 树状数组 O(nlogn)
http://acm.hdu.edu.cn/showproblem.php?pid=1394 //hdu 题目
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
给定一个数组 a1,a2....an,定义逆序数对(i,j)满足条件 i< j 且 ai > aj。
现在题目给你数组,求他的所有循环数组的逆序数对中最少的是多少。
所谓循环数组即为:
a1, a2, ..., an-1, an (从1开始的初始数组)
a2, a3, ..., an, a1 (从a2开始到an,再加上a1)
a3, a4, ..., an, a1, a2 (a3开始到an,再连上a1和a2)
...
an, a1, a2, ..., an-1 (an,然后从a1到a(n-1))
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
输入有多组数据. 每个测试案例的第一行是一个数n(n <= 5000)表示数组长度: 接下来一行是n个数表示数组内容,数组内的数字是0~n-1以内的数,且没有重复
Output
For each case, output the minimum inversion number on a single line.
对于每个样例输出一个数字表示答案
思路:
首先是怎么求其中一个序列的逆序数对
假设序列开始一个数都没有
每添加一个数之前计算序列有多少数大于该数(即在该位添加时会增加多少对逆序数)<===算作一个状态
将所有状态相加即是该序列的逆序数对数量
拿样例来说
那怎么高效的算出所有循环数组的逆序数对个数
观察不难发现,当a0移动到an-1末尾后减少了它之后能与它形成逆序数对的个数(比它小的数)
增加了在末尾时它之前能与它形成逆序数对的个数(比它大的数)
由于下一个循环数列必定是将头移至尾,所以减少的个数为比它小的个数
增加的个数为比它大的个数
因为数是不会重复的且为0~n-1共n个,所以 a[i] - 1就是序列中比它小的数的个数
n - a[i]就是序列中比它大的数的个数
代码:
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 6 const int maxn = 5005; 7 8 int c[maxn], a[maxn], n; 9 10 inline int lowbit(int x){ 11 return x&(-x); 12 } 13 14 void update(int i, int value){ 15 while(i <= n){ 16 c[i] += value; 17 i += lowbit(i); 18 } 19 } 20 21 int sum(int i){ 22 int s = 0; 23 while(i > 0){ 24 s += c[i]; 25 i -= lowbit(i); 26 } 27 return s; 28 } 29 30 int main(){ 31 while(~scanf("%d", &n)){ 32 for (int i = 1; i <= n; ++i){ 33 c[i] = 0; 34 } 35 int s = 0; //最开始逆序数对数为0 36 for(int i = 1; i <= n; i ++){ 37 scanf("%d", &a[i]); 38 a[i] ++; //树状数组从1开始 数据范围(0~n-1) 39 s += (sum(n) - sum(a[i])); //找出所有比a[i]大的数的逆序数对数 40 update(a[i], 1); //记录这个数 41 } 42 int ans = s; 43 for(int i = 1; i < n; i ++){ 44 s += (n - a[i]*2 + 1); //比较完后因为 n 个数范围(0~n-1)且不重复, 所以比a[i] 小的数为a[i] - 1; 45 // 每次将头元素移至末尾都会减少比头小的数(a[i] - 1)个逆序数,增加比头大的数(n - a[i])个逆序数 46 // 所以增加的逆序数为 n - a[i] * 2 + 1 [+(n - a[i]) -(a[i] - 1)] 47 if(ans > s) //记录更少的逆序数对数 48 ans = s; 49 } 50 printf("%d\n", ans); 51 } 52 return 0; 53 }