Live2D

2021-06-27 & 2021-06-28 集训题解

西克

题目传送门

Description

Solution

跟 2021年省选A卷D2T1 一模一样,懒得讲了

不过这个题似乎有点卡空间,所以卡不过去

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define MAXN 2000005

template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> void chkmax (T &a,T b){a = max (a,b);}
template <typename T> void chkmin (T &a,T b){a = min (a,b);}

unsigned int s1,s2;
vector <int> g[MAXN];
int n,q,a[MAXN],b[MAXN];

unsigned int rnd(){
    s1*=s2,s2>>=s1&13,s2-=s1,s1^=s2;
    return ((s1-s2)&(s1+s2))^(s1*s2>>4);
}

int ind,tur[MAXN],siz[MAXN],son[MAXN],dfn[MAXN],par[MAXN],dep[MAXN],Top[MAXN];
void dfs (int u,int fa){
    siz[u] = 1,dep[u] = dep[fa] + 1,par[u] = fa;
    for (Int v : g[u]){
        dfs (v,u),siz[u] += siz[v];
        if (siz[v] > siz[son[u]]) son[u] = v;
    }
}
void dfs1 (int u,int top){
    Top[u] = top,dfn[u] = ++ ind,tur[ind] = u;
    if (son[u]) dfs1 (son[u],top);
    for (Int v : g[u]) if (v != son[u]) dfs1 (v,v);
}

#define pii pair<int,int>
vector <pii> S1,S2;
vector <int> E[MAXN];

int nxt[MAXN][22],lst[MAXN][22];

int makeit (int u,int v){
    int now = a[u];
    S1.clear (),S2.clear ();
    while (Top[u] ^ Top[v]){
        if (dep[Top[u]] > dep[Top[v]]) S1.push_back ({dfn[Top[u]],dfn[u]}),u = par[Top[u]];
        else S2.push_back ({dfn[Top[v]],dfn[v]}),v = par[Top[v]];     
    }
    if (dep[u] <= dep[v]) S2.push_back ({dfn[u],dfn[v]});
    else S1.push_back ({dfn[v],dfn[u]});
    reverse (S2.begin(),S2.end());
    for (pii it : S1) if (E[now].size()){
        int L = it.first,R = it.second,whe = upper_bound (E[now].begin(),E[now].end(),R) - E[now].begin();
        if (E[now][0] > R || E[now][-- whe] < L) continue;whe = E[now][whe];
        for (Int i = 21;~i;-- i) if (lst[whe][i] >= L) whe = lst[whe][i];
        now = b[tur[whe]];
    }
    for (pii it : S2) if (E[now].size()){
        int L = it.first,R = it.second,whe = lower_bound (E[now].begin(),E[now].end(),L) - E[now].begin();
        if (E[now][E[now].size() - 1] < L || E[now][whe] > R) continue;whe = E[now][whe];
        for (Int i = 21;~i;-- i) if (nxt[whe][i] && nxt[whe][i] <= R) whe = nxt[whe][i];
		now = b[tur[whe]];
    }
    return now;
}


signed main(){
	freopen ("shik.in","r",stdin);
	freopen ("shik.out","w",stdout);
    read (n,q),read (s1,s2);
    for (Int i = 1;i <= min (n,500000);++ i) read (a[i],b[i]);
    for(int i=500001;i<=n;i++){
        a[i]=rnd()%n+1;b[i]=a[rnd()%500000+1];
        if(a[i]==b[i]){
            ++a[i];
            if(a[i]>n)a[i]=1;
        }
    }
    for (Int i = 2,x;i <= n;++ i) read (x),g[x].push_back (i);
    dfs (1,0),dfs1 (1,1);
    for (Int i = 1;i <= n;++ i){
        int v = a[tur[i]];
        E[v].push_back (i);
    }
    for (Int i = 1;i <= n;++ i){
        int v1 = a[tur[i]],v2 = b[tur[i]],pos = lower_bound (E[v2].begin(),E[v2].end(),i) - E[v2].begin();
        if (!pos) continue;
        else{
            lst[i][0] = E[v2][-- pos];
            for (Int j = 1;(1 << j) <= i;++ j) lst[i][j] = lst[lst[i][j - 1]][j - 1];
        }
    }
    for (Int i = n;i >= 1;-- i){
        int v1 = a[tur[i]],v2 = b[tur[i]],pos = upper_bound (E[v2].begin(),E[v2].end(),i) - E[v2].begin();
        if (pos == E[v2].size()) continue;
        else{
            nxt[i][0] = E[v2][pos];
            for (Int j = 1;(1 << j) <= n - i + 1;++ j) nxt[i][j] = nxt[nxt[i][j - 1]][j - 1];
        }
    }
    int ans = 0;
    while (q --> 0){
        int x,y;read (x,y);
        ans ^= makeit (x,y);
    }
    write (ans),putchar ('\n');
	return 0;
}

尼特

题目传送门

Description

Solution

还没做出来,之后再补坑吧

苯为

题目传送门

Description

Solution

首先不难看出一个长度为 \(n\) 的环会产生的贡献是:

\[(k-1)^{n(A+1)}+(-1)^{n(A+1)}\times (k-1) \]

那么,答案就是:

\[\sum_{s}\sum_{t} ((k-1)^{d(A+1)+(-1)^{d(A+1)}(k-1)})\times (k-1)^{(n-d)(A+1)} \]

\[=n^2\times (k-1)^{n(A+1)}+(k-1)\sum_{s}\sum_{t} (-1)^{d(A+1)}(k-1)^{(n-d)(A+1)} \]

然后你发现后来那个可以视作:环上的点贡献为 \((-1)^{A+1}\),不在环上的点贡献为 \((k-1)^{A+1}\),树的贡献之积的和。

这个可以直接 dp,设 \(f_u\) 表示还没有将两条不转向的链合并时链头为 \(u\) 的贡献之和,转移显然。

复杂度 \(\Theta(n)\)

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define int long long
#define mod 421969921
#define MAXN 1000005

template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> void chkmax (T &a,T b){a = max (a,b);}
template <typename T> void chkmin (T &a,T b){a = min (a,b);}

int n,A,K,siz[MAXN];
vector <int> g[MAXN];

int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
	a %= mod,b %= (mod - 1);
	int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
	return res;
}
int upd (int x){return x < 0 ? x + mod : x;}
int inv (int x){return qkpow (x,mod - 2);}
void Add (int &a,int b){a = add (a,b);}
void Sub (int &a,int b){a = dec (a,b);}

int v1,v2,ans,f[MAXN],pw1[MAXN],pw2[MAXN];//v1表示在链上的贡献,v2表示不在链上的贡献 

void dfs (int u,int fa){
	siz[u] = 1;int res = 0;
	for (Int v : g[u]) if (v ^ fa){
		dfs (v,u);
		res = add (mul (res,pw2[siz[v]]),mul (f[u],f[v]));
		f[u] = add (mul (f[u],pw2[siz[v]]),mul (f[v],mul (pw2[siz[u] - 1],v1)));
		siz[u] += siz[v];
	}
	Add (ans,mul (v1,pw2[n - 1])),Add (ans,mul (2,mul (res,pw2[n - siz[u]]))),Add (ans,mul (2,mul (f[u],pw2[n - siz[u]]))),Add (f[u],mul (v1,pw2[siz[u] - 1]));
}

signed main(){
	freopen ("ber.in","r",stdin);
	freopen ("ber.out","w",stdout);
	read (n,A,K),A = A % (mod - 1),K %= mod;
	for (Int i = 2,x,y;i <= n;++ i) read (x,y),g[x].push_back (y),g[y].push_back (x);
	v1 = A + 1 & 1 ? mod - 1 : 1,v2 = qkpow (K - 1,A + 1);
	pw1[0] = pw2[0] = 1;for (Int i = 1;i <= n;++ i) pw1[i] = mul (pw1[i - 1],v1),pw2[i] = mul (pw2[i - 1],v2);
	dfs (1,0),ans = add (mul (ans,K - 1),mul (mul (n,n),qkpow (K - 1,n * (A + 1) % (mod - 1))));
	write (ans),putchar ('\n');
	return 0;
}

神奇纸牌

题目传送门

Description

Solution

考试的时候脑抽了。

可以想到的是,可以将问题转换为:有 \(n\) 次操作,\(4\) 种颜色,每次操作可以将若干个颜色两两连边,问最后度数不为 \(0\) 的颜色都联通的方案数。

然后你可以设 \(f_{i,S}\) 表示考虑了前 \(i\) 个,联通及出现状态为 \(S\) 的方案数,然后你发现状态数为 \(52\),就可以直接矩阵快速幂了。

复杂度 \(\Theta(52^3\times \log n)\)

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define int long long
#define MAXN 85

template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> void chkmax (T &a,T b){a = max (a,b);}
template <typename T> void chkmin (T &a,T b){a = min (a,b);}

int n,mod;
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
	int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
	return res;
}
int inv (int x){return qkpow (x,mod - 2);}
void Add (int &a,int b){a = add (a,b);}

int tot;
map <vector <int>,int> mp;
map <int,vector <int> > tur;

vector <int> Snow;
void dfs (int now,int cnt){
	if (now > 4){
		if (mp.find (Snow) != mp.end()) ;
		else mp[Snow] = ++ tot,tur[tot] = Snow;
		return ;
	}
	for (Int i = 0;i <= cnt;++ i) Snow.push_back (i),dfs (now + 1,cnt),Snow.pop_back ();
	Snow.push_back (cnt + 1),dfs (now + 1,cnt + 1),Snow.pop_back ();
}

int h[55][55] = {
{},
{0,1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 1 , 4 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 1 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 0 , 0 , 0 , 1 , 4 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 0 , 0 , 0 , 1 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 1 , 3 , 1 , 1 , 3 , 1 , 3 , 8 , 3 , 1 , 3 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 5 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 5 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 5 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 4 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 1 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 1 , 3 , 8 , 3 , 1 , 3 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 5 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 5 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 5 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 1 , 0 , 0 , 0 , 1 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 8 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 3 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 3 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 8 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0},
{0,1 , 1 , 1 , 3 , 1 , 1 , 3 , 1 , 3 , 7 , 3 , 1 , 3 , 3 , 1 , 1 , 3 , 1 , 3 , 7 , 3 , 1 , 3 , 3 , 1 , 3 , 7 , 3 , 7 , 16 , 7 , 3 , 7 , 9 , 3 , 1 , 3 , 3 , 1 , 3 , 7 , 9 , 3 , 3 , 9 , 7 , 3 , 1 , 3 , 3 , 3 , 1},
{0,0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 3 , 1 , 0 , 9 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 1},
{0,0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0},
{0,0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 3 , 9 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 3 , 0 , 1},
{0,0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 7 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0},
{0,0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1},
{0,0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 5 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 5 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 3 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 0 , 1 , 3 , 9 , 0 , 3 , 0 , 0 , 0 , 0 , 1 , 3 , 0 , 3 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 7 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 7 , 0 , 1 , 0 , 1 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 3 , 1 , 0 , 0 , 0 , 0 , 3 , 0 , 9 , 3 , 1 , 0 , 3 , 3 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 6 , 0 , 0 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 6 , 0 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 6 , 1},
{0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 5},
};

struct Matrix{
	int mat[55][55];
	Matrix(){memset (mat,0,sizeof (mat));}
	int * operator [] (const int key){return mat[key];}
	Matrix operator * (const Matrix &p)const{
		Matrix New;
		for (Int i = 1;i <= 52;++ i)
			for (Int j = 1;j <= 52;++ j)
				for (Int k = 1;k <= 52;++ k)
					Add (New[i][k],mul (mat[i][j],p.mat[j][k]));
		return New;
	}
}A;

Matrix qkpow (Matrix A,int b){
	Matrix res;
	for (Int i = 1;i <= 52;++ i) res[i][i] = 1;
	while (b){
		if (b & 1) res = res * A;
		A = A * A,b >>= 1;
	}
	return res;
}

signed main(){
	freopen ("uno.in","r",stdin);
	freopen ("uno.out","w",stdout);
	dfs (1,0);
	read (n,mod);int tot = 52;
	for (Int i = 1;i <= tot;++ i)
		for (Int j = 1;j <= tot;++ j)
			A[i][j] = h[i][j];
	A = qkpow (A,n);
	int ans = 0;
	for (Int S = 0;S < (1 << 4);++ S){
		vector <int> H;
		for (Int i = 0;i < 4;++ i) H.push_back (S >> i & 1);
		ans += A[mp[H]][1],ans %= mod;
	}
	write (ans),putchar ('\n');
	return 0;
}

凌乱平衡树

题目传送门

Description

Solution

暴力都83分了还写什么正解啊?

不难想到的是,\(\sum dep=\sum siz\),而我们的答案就是 \(\sum sizA_i+\sum sizB_i\) 再加上在合并是被合并的那一方的子树大小。

那么,我们就可以转换成,把左边的树的右儿子不断递归产生的链递减的 \(siz\) 序列当作 \(A_{1,2,...}\),右边的树的左儿子不断递归产生的链的递减的 \(siz\) 序列当作 \(B_{1,2,...}\)。那么可以看出来,合并操作本质上就是,假设两者一个到了 \(i\),一个到了 \(j\),如果 \(A_i\geq B_j\),那么贡献加上 \(B_j\),然后 \(i+1\to i\),否则贡献加上 \(A_i\),然后\(j+1\to j\)

我们可以观察到,实际上 \(A_i\) 会产生的贡献就是 \(A_i\) 乘上在 \((A_{i},A_{i-1}]\)\(B_j\) 的个数,\(B_i\) 会产生的贡献就是 \(B_i\) 乘上在 \([B_i,B_{i-1})\)\(A_i\) 个数。

这个用平衡树、线段树之类的维护即可。复杂度 \(\Theta(n\log n)\)

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define int long long
#define MAXN 2000005

template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}

int n,m,up,rt[2],Ans;

#define ls(x) son[x][0]
#define rs(x) son[x][1]
int Siz[MAXN],par[MAXN],son[MAXN][2];

bool rnk (int x){return son[par[x]][1] == x;}
void pushup (int x){Siz[x] = Siz[ls(x)] + Siz[rs(x)] + 1;}
void dfs (int x){
	if (ls(x)) dfs (ls(x)),par[ls(x)] = x;
	if (rs(x)) dfs (rs(x)),par[rs(x)] = x;
	pushup (x);
}

bool ir[MAXN],inq[MAXN];

struct Segment_Tree{
	int sum[MAXN << 2];
	void ins (int x,int l,int r,int v,int t){
		sum[x] += t;
		if (l == r) return ;
		int mid = (l + r) >> 1;
		if (v <= mid) ins (x << 1,l,mid,v,t);
		else ins (x << 1 | 1,mid + 1,r,v,t);
	}
	void ins (int v){ins (1,1,up,v,1);}
	void del (int v){ins (1,1,up,v,-1);}
	int getsum (int x,int l,int r,int ql,int qr){
		if (ql > qr) return 0;
		if (qr < l || ql > r) return 0;
		if (l >= ql && r <= qr) return sum[x];
		int mid = (l + r) >> 1,res = 0;
		if (ql <= mid) res += getsum (x << 1,l,mid,ql,qr);
		if (qr > mid) res += getsum (x << 1 | 1,mid + 1,r,ql,qr);
		return res;
	}
	int count (int l,int r){return getsum (1,1,up,l,r);}
	int getrnk (int x,int l,int r,int k){
		if (sum[x] < k) return 0;
		if (l == r) return l;
		int mid = (l + r) >> 1;
		if (k <= sum[x << 1]) return getrnk (x << 1,l,mid,k);
		else return getrnk (x << 1 | 1,mid + 1,r,k - sum[x << 1]);
	}
	int pre1 (int v){
		int tot = getsum (1,1,up,1,v);
		if (!tot) return 0;
		return getrnk (1,1,up,tot);
	}
	int pre2 (int v){
		int tot = getsum (1,1,up,1,v - 1);
		if (!tot) return 0;
		return getrnk (1,1,up,tot);
	}
	int suf (int v){
		int tot = getsum (1,1,up,1,v);
		return getrnk (1,1,up,tot + 1);
	}
}Ta,Tb;

int getit (int opt,int Sx,bool tag){
	if (tag){
		if (opt == 0) return Tb.pre1 (Sx);
		else return Ta.pre2 (Sx);
	}
	else return 0;
}

int fucit (int opt,int Sx,bool tag){
	if (tag){
		if (opt == 0){
			int nxt = Ta.suf (Sx);if (!nxt) nxt = 1e9;
 			return Sx * Tb.count (Sx + 1,nxt); 
		}
		else{
			int nxt = Tb.suf (Sx);if (!nxt) nxt = 1e9;
			return Sx * Ta.count (Sx,nxt - 1); 
		}
	}
	else return 0;
}

void rotate (int opt,int x){
	int y = par[x],z = par[y],k = rnk(x),w = son[x][!k];
	if (z) son[z][rnk(y)] = x;son[x][!k] = y,son[y][k] = w;
	par[x] = z,par[y] = x;if (w) par[w] = y;
	int nxtS = 0;
	if (inq[y]){
		if (opt == 0) nxtS = Ta.pre2 (inq[x] ? Siz[x] : Siz[y]);
		else nxtS = Tb.pre2 (inq[x] ? Siz[x] : Siz[y]); 
	}
	Ans = Ans - Siz[x] - Siz[y] - getit (opt,Siz[x],inq[x]) - getit (opt,Siz[y],inq[y]) - getit (opt,nxtS,1) - fucit (opt,Siz[x],inq[x]) - fucit (opt,Siz[y],inq[y]) - fucit (opt,nxtS,1);
	bool lasx = inq[x],lasy = inq[y];
	if (!z || (inq[z] && son[z][!opt] == x)) inq[x] = 1;
	else inq[x] = 0;
	if (inq[x] && son[x][!opt] == y) inq[y] = 1;
	else inq[y] = 0;
	if (lasx){
		if (opt == 0) Ta.del (Siz[x]);
		else Tb.del (Siz[x]); 
	}
	if (lasy){
		if (opt == 0) Ta.del (Siz[y]);
		else Tb.del (Siz[y]); 
	}
	pushup (y),pushup (x);
	if (inq[x]){
		if (opt == 0) Ta.ins (Siz[x]);
		else Tb.ins (Siz[x]); 
	}
	if (inq[y]){
		if (opt == 0) Ta.ins (Siz[y]);
		else Tb.ins (Siz[y]); 
	}
	if (!z) rt[opt] = x;
	Ans = Ans + Siz[x] + Siz[y] + getit (opt,Siz[x],inq[x]) + getit (opt,Siz[y],inq[y]) + getit (opt,nxtS,1) + fucit (opt,Siz[x],inq[x]) + fucit (opt,Siz[y],inq[y]) + fucit (opt,nxtS,1);
}

signed main(){
	freopen ("treap.in","r",stdin);
	freopen ("treap.out","w",stdout);
	read (n,m),up = max (n,m);
	for (Int x = 1;x <= n;++ x) read (ls(x),rs(x)),ir[ls(x)] = ir[rs(x)] = 1;
	for (Int i = n + 1;i <= n + m;++ i){
		int x,y;read (x,y);
		if (x) x += n;if (y) y += n;
		son[i][0] = x,son[i][1] = y;
		ir[x] = ir[y] = 1;
	}
	for (Int i = 1;i <= n;++ i) if (!ir[i]) rt[0] = i;
	for (Int i = 1;i <= m;++ i) if (!ir[n + i]) rt[1] = n + i;
	dfs (rt[0]),dfs (rt[1]);
	for (Int i = 1;i <= n + m;++ i) Ans += Siz[i];
	int now;now = rt[0];while (now) inq[now] = 1,Ta.ins (Siz[now]),now = rs(now);
	now = rt[1];while (now) inq[now] = 1,Tb.ins (Siz[now]),now = ls(now);
	for (Int a = 1;a <= n;++ a) if (inq[a]) Ans += Tb.pre1 (Siz[a]);
	for (Int b = n + 1;b <= n + m;++ b) if (inq[b]) Ans += Ta.pre2 (Siz[b]);
	write (Ans),putchar ('\n');
	int q;read (q);
	while (q --> 0){
		int opt,x;read (opt,x);
		if (rt[opt - 1] == (opt - 1) * n + x) continue; 
		rotate (opt - 1,(opt - 1) * n + x),write (Ans),putchar ('\n');
	}
	return 0;
}

打扫笛卡尔

题目传送门

Description

Solution

可以看出,设 \(f_n\) 表示笛卡尔树上一个子树大小为 \(n\) 的区间(或者叫子树)会产生的期望贡献,\(g_n\) 表示笛卡尔树上一个子树大小为 \(n\) 的区间的期望会走到的子树大小。

可以得到转移式:

\[g_n=\frac{1}{n}\sum_{x=1}^{n} 1+\frac{1}{2}\times (g_{x-1}+g_{n-x})\\ f_n=\frac{1}{n}\sum_{x=1}^{n} g_n+\frac{1}{2}\times (f_{x-1}+f_{n-x}) \]

答案就是 \(f_n\times n!\)

然后你发现这个东西可以通过前缀和做到 \(\Theta(n)\)。不过这个题并不保证模数为质数,但是你发现 \(g_n\) 实际上就是调和级数,最后还要乘上 \(n!\) 就直接消掉了。

复杂度 \(\Theta(n)\)

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define int long long
#define MAXN 10000005

template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> void chkmax (T &a,T b){a = max (a,b);}
template <typename T> void chkmin (T &a,T b){a = min (a,b);}

int n,mod,pre[MAXN],suf[MAXN];
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
	int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
	return res;
}
void Add (int &a,int b){a = add (a,b);}

signed main(){
	freopen ("cartesian.in","r",stdin);
	freopen ("cartesian.out","w",stdout);
	read (n,mod);
	int ans = 0,pre = 1,a = 0,b = 0;
	for (Int i = 1;i <= n;++ i){
		a = add (mul (a,i),b);
		b = add (mul (b,i),pre),
		pre = mul (pre,i);
	}
	write (add (a,b)),putchar ('\n');
	return 0;
}
posted @ 2021-06-29 12:09  Dark_Romance  阅读(125)  评论(0编辑  收藏  举报