1. 导数简介
1.1 导数的定义
当函数 \(y=f(x)\) 的自变量 \(x\) 在一点 \(x_0\) 上产生一个增量 \(\Delta x\) 时,函数输出值的增量 \(\Delta y\) 与自变量增量 \(\Delta x\) 的比值在 \(\Delta x\) 趋于 \(0\) 时的极限 \(a\) 如果存在,\(a\) 即为在 \(x_0\) 处的导数,记作\(f^{'}(x_0)\) 或 \(\frac{df(x)}{dx}\)。
1.2 导数的概念
称函数 \(f(x)\) 在 \(x=x_0\) 处的瞬时变化率 \(\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\) 为函数 \(f(x)\) 在 \(x=x_0\) 处的导数,记作 \(f^{'}(x_0)\) 或 \(\frac{df(x)}{dx}\) 或 \(y^{'}|_{x=x_0}\),即 \(f^{'}(x_0)=\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\)
1.3 导数的几何意义
函数 \(y=f(x)\) 在 \(x=x_0\) 处的导数 \(f^{'}(x_0)\) 就是曲线在点 \(P(x_0,y_0)\) 处的切线的斜率,即 \(k=f^{'}(x_0)\)。
2. 基本初等函数求导
- \(f(x)=c\Rightarrow f^{'}(x)=0\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{c-c}{\Delta x}\\
&= 0
\end{aligned}
\]
- \(f(x)=x^a\Rightarrow f^{'}(x)=ax^{a-1}\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{(x_0+\Delta x)^a-x^a}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{x^a[(1+\frac{\Delta x}{x})^a-1]}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{x^a[e^{a\ln_(1+\frac{\Delta x}{x})}-1]}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{x^a[e^{(a\frac{\Delta x}{x})}-1]}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{x^a\cdot a \frac{\Delta x}{x}}{\Delta x}\\
&=ax^{a-1}
\end{aligned}
\]
- \(f(x)=a^x\Rightarrow f^{'}(x)=a^x\ln a\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}\\
&=a^x\lim\limits_{\Delta x \to 0}\frac{a^{\Delta x}-1}{\Delta x}\\
&=a^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x \ln a}-1}{\Delta x}\\
&=a^x\lim\limits_{\Delta x \to 0}\frac{\Delta x \ln a}{\Delta x}\\
&=a^x \ln a
\end{aligned}
\]
- \(f(x)=\sin x\Rightarrow f^{'}(x)=\cos x\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\sin(x+\Delta x)-\sin(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{2\cos(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\cos(\frac{2x+\Delta x}{2})\\
&= \cos x
\end{aligned}
\]
- \(f(x)=\cos x\Rightarrow f^{'}(x)=-\sin x\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\cos(x+\Delta x)-\cos(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{-2\sin(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}-\sin(\frac{2x+\Delta x}{2})\\
&= -\sin x
\end{aligned}
\]
- \(f(x)=e^x\Rightarrow f^{'}(x)=e^x\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{e^{x+\Delta x}-e^x}{\Delta x}\\
&=e^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x}-1}{\Delta x}\\
&=e^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x \ln e}-1}{\Delta x}\\
&=e^x\lim\limits_{\Delta x \to 0}\frac{\Delta x \ln e}{\Delta x}\\
&=e^x \ln e\\
&=e^x
\end{aligned}
\]
- \(f(x)=\log_a x\Rightarrow f^{'}(x)=\frac{1}{x\ln a}\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\log_a (x+\Delta x)-\log_a x}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\log_a (1+\frac{\Delta x}{x})}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\ln (1+\frac{\Delta x}{x})}{\Delta x \ln a}\\
&=\lim\limits_{\Delta x \to 0}\frac{\frac{\Delta x}{x}}{\Delta x \ln a}\\
&=\frac{1}{x\ln a}\\
\end{aligned}
\]
- \(f(x)=\ln x\Rightarrow f^{'}(x)=\frac{1}{x}\)
证明:
\[\begin{aligned}
f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\log_e (x+\Delta x)-\log_e x}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\log_e (1+\frac{\Delta x}{x})}{\Delta x}\\
&=\lim\limits_{\Delta x \to 0}\frac{\ln (1+\frac{\Delta x}{x})}{\Delta x \ln e}\\
&=\lim\limits_{\Delta x \to 0}\frac{\frac{\Delta x}{x}}{\Delta x \ln e}\\
&=\frac{1}{x\ln e}\\
&=\frac{1}{x}
\end{aligned}
\]
3. 导数四则运算
-
加/减法:\([f(x)\pm g(x)]^{'}=f^{'}(x)\pm g^{'}(x)\)
-
数乘:\([kf(x)]^{'}=kf^{'}(x)\)
-
乘法:\([f(x)g(x)]^{'}=f^{'}(x)g(x)+f(x)g^{'}(x)\)
-
除法:\([\frac{g(x)}{f(x)}]^{'}=\frac{[f(x)g^{'}(x)-f^{'}(x)g(x)]}{f(x)^2}\)
4. 复合函数求导
复合函数求导即为内外函数求导的乘积,即 \(f^{'}(g(x))=f^{'}(x)g^{'}(x)\)。
比如,对 \(g(x)=f(\ln x)\) 求导。此时 \(f(\ln x)\) 分为两部分:
-
\(f(t)\Rightarrow f^{'}(t)\)
-
\(t=\ln x\Rightarrow t^{'}=\frac{1}{x}\)
所以 \(g^{'}(x)=f^{'}(\ln x)=f^{'}(x)\times \frac{1}{x}=\frac{f^{'}(x)}{x}\)。
再比如对 \(f(x)=\sin 3x\) 求导。同样分为两部分:
-
\(\sin t \Rightarrow (\sin t)^{'}=\cos(t)\)
-
\(t=3x \Rightarrow t^{'}=3\)
所以 \(f^{'}(x)=(\sin t)^{'}\times t^{'}=3\cos(t)=3\cos(3x)\)。
5. 切线方程
5.1 点斜式
一次函数 \(y=kx+b\) 过点 \((x_0,y_0)\),则有 \(y-y_0=k(x-x_0)\)。证明显然。
5.2 求切线方程
已知曲线函数与切点,可快速求出切线方程。
曲线函数为 \(f(x)\),切线解析式为 \(y=kx+b\),则 \(y-f(x)=f^{'}(x_0)(x-x_0)\) 为切线方程。
此时 \(k=f^{'}(x)\)。