Numpy 排序,条件筛选函数
NumPy 排序、条件刷选函数
NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较。
种类 | 速度 | 最坏情况 | 工作空间 | 稳定性 |
---|---|---|---|---|
'quicksort' (快速排序) |
1 | O(n^2) |
0 | 否 |
'mergesort' (归并排序) |
2 | O(n*log(n)) |
~n/2 | 是 |
'heapsort' (堆排序) |
3 | O(n*log(n)) |
0 | 否 |
numpy.sort()
numpy.sort() 函数返回输入数组的排序副本。函数格式如下:
numpy.sort(a, axis, kind, order)
参数说明:
- a: 要排序的数组
- axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
- kind: 默认为'quicksort'(快速排序)
- order: 如果数组包含字段,则是要排序的字段
numpy.argsort()
numpy.argsort() 函数返回的是数组值从小到大的索引值。
numpy.lexsort()
numpy.lexsort() 用于对多个序列进行排序。把它想象成对电子表格进行排序,每一列代表一个序列,排序时优先照顾靠后的列。
import numpy as np
nm = ('raju','anil','ravi','amar')
dv = ('f.y.', 's.y.', 's.y.', 'f.y.')
ind = np.lexsort((dv,nm))
print ('调用 lexsort() 函数:')
print (ind)
print ('\n')
print ('使用这个索引来获取排序后的数据:')
print ([nm[i] + ", " + dv[i] for i in ind])
import numpy as np
nm = ('raju','anil','ravi','amar')
dv = ('f.y.', 's.y.', 's.y.', 'f.y.')
ind = np.lexsort((dv,nm))
print ('调用 lexsort() 函数:')
print (ind)
print ('\n')
print ('使用这个索引来获取排序后的数据:')
print ([nm[i] + ", " + dv[i] for i in ind])
上面传入 np.lexsort 的是一个tuple,排序时首先排 nm,顺序为:amar、anil、raju、ravi 。综上排序结果为 [3 1 0 2]。
msort、sort_complex、partition、argpartition
函数 | 描述 |
---|---|
msort(a) | 数组按第一个轴排序,返回排序后的数组副本。np.msort(a) 相等于 np.sort(a, axis=0)。 |
sort_complex(a) | 对复数按照先实部后虚部的顺序进行排序。 |
partition(a, kth[, axis, kind, order]) | 指定一个数,对数组进行分区 |
argpartition(a, kth[, axis, kind, order]) | 可以通过关键字 kind 指定算法沿着指定轴对数组进行分区 |
numpy.argmax() 和 numpy.argmin()
numpy.argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引。
numpy.nonzero()
numpy.nonzero() 函数返回输入数组中非零元素的索引。
numpy.where()
numpy.where() 函数返回输入数组中满足给定条件的元素的索引。
numpy.extract()
numpy.extract() 函数根据某个条件从数组中抽取元素,返回满条件的元素。
import numpy as np
x = np.arange(9.).reshape(3, 3)
print ('我们的数组是:')
print (x)
# 定义条件, 选择偶数元素
condition = np.mod(x,2) == 0
print ('按元素的条件值:')
print (condition)
print ('使用条件提取元素:')
print (np.extract(condition, x))