【BZOJ-3527】力 FFT
3527: [Zjoi2014]力
Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 899
[Submit][Status][Discuss]
Description
给出n个数qi,给出Fj的定义如下:
令Ei=Fi/qi,求Ei.
Input
第一行一个整数n。
接下来n行每行输入一个数,第i行表示qi。
n≤100000,0<qi<1000000000
Output
n行,第i行输出Ei。与标准答案误差不超过1e-2即可。
Sample Input
5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
Sample Output
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872
3439.793
7509018.566
4595686.886
10903040.872
HINT
Source
Solution
一道裸的FFT,我瞪了快一节课...
先两边同除$p_{j}$就可以直接得到$E_{j}$的关于$q$的关系..然后就可以看出是一个卷积的形式了..
主要是光想直接$A\bigotimes B=E$,实际上正反求一下相减就好..
然后这里discuss里提醒了我一件事..爆int
Code
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> using namespace std; struct Complex{ double r,i; Complex(double R=0.0,double I=0.0) {r=R; i=I;} Complex operator + (const Complex & A) const {return Complex(r+A.r,i+A.i);} Complex operator - (const Complex & A) const {return Complex(r-A.r,i-A.i);} Complex operator * (const Complex & A) const {return Complex(r*A.r-i*A.i,r*A.i+i*A.r);} }; #define MAXN 600010 #define Pai acos(-1.0) Complex A[MAXN],B[MAXN],C[MAXN],D[MAXN]; int N,len; double a[MAXN]; inline void Prework() { len=1; while (len<((N-1)<<1)) len<<=1; for (int i=0; i<=N-1; i++) A[i]=Complex(a[i],0); for (int i=N; i<len; i++) A[i]=Complex(0,0); for (int i=0; i<=N-1; i++) B[i]=Complex(a[N-1-i],0); for (int i=N; i<len; i++) B[i]=Complex(0,0); for (int i=0; i<=N-1; i++) if (i) D[i]=C[i]=Complex(1.0/i/i,0); for (int i=N; i<len; i++) D[i]=C[i]=Complex(0,0); } inline void Rader(Complex *x) { for (int i=1,j=len>>1,k; i<len-1; i++) { if (i<j) swap(x[i],x[j]); k=len>>1; while (j>=k) j-=k,k>>=1; if (j<k) j+=k; } } inline void DFT(Complex *x,int opt) { Rader(x); for (int h=2; h<=len; h<<=1) { Complex Wn( cos(opt*2*Pai/h),sin(opt*2*Pai/h) ); for (int i=0; i<len; i+=h) { Complex W(1,0); for (int j=i; j<i+h/2; j++) { Complex u=x[j],t=W*x[j+h/2]; x[j]=u+t; x[j+h/2]=u-t; W=W*Wn; } } } if (opt==-1) for (int i=0; i<len; i++) x[i].r/=len; } inline void FFT(Complex *x,Complex *y) { DFT(x,1); DFT(y,1); for (int i=0; i<len; i++) x[i]=x[i]*y[i]; DFT(x,-1); } int main() { scanf("%d",&N); for (int i=0; i<N; i++) scanf("%lf",&a[i]); Prework(); // for (int i=0; i<len; i++) printf("%.6lf\n",A[i].r); puts("================="); // for (int i=0; i<len; i++) printf("%.6lf\n",B[i].r); puts("================="); // for (int i=0; i<len; i++) printf("%.6lf\n",C[i].r); puts("================="); FFT(A,C); FFT(B,D); for (int i=0; i<N; i++) printf("%.3lf\n",A[i].r-B[N-1-i].r); return 0; }
——It's a lonely path. Don't make it any lonelier than it has to be.