树上倍增求LCA(最近公共祖先)
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?。。)
倍增求LCA:
father【i】【j】表示节点i往上跳2^j次后的节点
可以转移为
father【i】【j】=father【father【i】【j-1】】【j-1】
(此处注意循环时先循环j,再循环i)
然后dfs求出各个点的深度depth
整体思路:
先比较两个点的深度,如果深度不同,先让深的点往上跳,浅的先不动,等两个点深度一样时,if 相同 直接返回,if 不同 进行下一步;如果不同,两个点一起跳,j从大到小枚举(其实并不大),如果两个点都跳这么多后,得到的点相等,两个点都不动(因为有可能正好是LCA也有可能在LCA上方),知道得到的点不同,就可以跳上来,然后不断跳,两个点都在LCA下面那层,所以再跳1步即可,当father【i】【j】中j=0时即可,就是LCA,返回值结束
感谢Sunshinezff学长的编码纠错帮助
下面是代码:“`
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
vector <int> g[100010];
int father[100010][40]={0};
int depth[100010]={0};
int n,m;
bool visit[10010]={false};
int root;
void dfs(int u)
{
int i;
visit[u]=true;
for (i=0;i<g[u].size();i++)
{
int v=g[u][i];
if ( !visit[v] )
{
depth[v]=depth[u]+1;
dfs(v);
}
}
}//深搜出各点的深度,存在depth中
void bz()
{
int i,j;
for (j=1;j<=30;j++)
for (i=1;i<=n;i++)
father[i][j]=father[father[i][j-1]][j-1];
}//倍增,处理father数组,详情参照上述讲解
int LCA(int u,int v)
{
if ( depth[u]<depth[v] )
{
int temp=u;
u=v;
v=temp;
}//保证深度大的点为u,方便操作
int dc=depth[u]-depth[v];
int i;
for (i=0;i<30;i++)//值得注意的是,这里需要从零枚举
{
if ( (1<<i) & dc)//一个判断,模拟一下就会很清晰
u=father[u][i];
}
//上述操作先处理较深的结点,使两点深度一致
if (u==v) return u;//如果深度一样时,两个点相同,直接返回
for (i=29;i>=0;i--)
{
if (father[u][i]!=father[v][i])//跳2^j步不一样,就跳,否则不跳
{
u=father[u][i];
v=father[v][i];
}
}
u=father[u][0];//上述过程做完,两点都在LCA下一层,所以走一步即可
return u;
}
int main()
{
int i,j;
scanf("%d",&n);
for (i=0;i<=n;i++)
g[i].clear();
for (i=1;i<n;i++)
{
int a,b;
int root;
scanf("%d%d",&a,&b);
g[a].push_back(b);
father[b][0]=a;
if (father[a][0]==0)
root=a;
}
depth[root]=1;
dfs(root);
bz();
int x,y;
scanf("%d%d",&x,&y);
printf("%d",LCA(x,y));
return 0;
}
“`
——It's a lonely path. Don't make it any lonelier than it has to be.