POJ-2299 Ultra_QuickSort 线段树+逆序对数
Ultra-QuickSort
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions: 50737 Accepted: 18595
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
Source
Waterloo local 2005.02.05
题目大意:给定一个数列,求冒泡排序交换次数(逆序对数)
线段树求逆序对,在数据范围过大的时候,需要进行离散化,然后进行建树,基本题
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 500002
int sum[maxn<<2]={0};
struct data{
int num,loc;
};
int f2[maxn]={0};
data f1[maxn]={0};
int cmp(data x,data y)
{
return x.num<y.num;
}
void updata(int now)
{
sum[now]=sum[now<<1]+sum[now<<1|1];
}
void point_change(int now,int l,int r,int loc)
{
if (l==r)
{
sum[now]++;
return;
}
int mid=(l+r)>>1;
if (loc<=mid)
point_change(now<<1,l,mid,loc);
else
point_change(now<<1|1,mid+1,r,loc);
updata(now);
}
int query(int L,int R,int l,int r,int now)
{
if (L<=l && R>=r)
return sum[now];
int mid=(l+r)>>1;
int ans=0;
if (L<=mid)
ans+=query(L,R,l,mid,now<<1);
if (R>mid)
ans+=query(L,R,mid+1,r,now<<1|1);
return ans;
}
int main()
{
int n;
while (true)
{
scanf("%d",&n);
memset(f1,0,sizeof(f1));
memset(f2,0,sizeof(f2));
memset(sum,0,sizeof(sum));
if (n==0) break;
long long number=0;
for (int i=1; i<=n; i++)
{
scanf("%d",&f1[i].num);
f1[i].loc=i;
}
sort(f1+1,f1+n+1,cmp);
for (int i=1; i<=n; i++)
f2[f1[i].loc]=i;//离散化部分(感觉这个离散化写的巨不专业)
//for (int i=1; i<=n; i++)
//cout<<f2[i]<<' ';
//cout<<endl;
for (int i=1; i<=n; i++)
{
int x=f2[i];
number+=query(x,n,1,n,1);
point_change(1,1,n,x);
}//逆序对的求法,每次从这个数到n求和,找出比他大的且出现在它之前的
printf("%d",number);
}
return 0;
}