codevs1098 均分纸牌(贪心)

题目描述 Description

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入描述 Input Description

第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出描述 Output Description

输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘

样例输入 Sample Input

4
9 8 17 6

样例输出 Sample Output

3

搞懂一点就好。设从i向j移动x张,x为正说明是i -> j移动,x为负说明是j -> i移动。

#include<iostream>
#include<cassert>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<iterator>
#include<cstdlib>
#include<vector>
#include<stack>
#include<map>
#include<set>
using namespace std;
#define debug(x) cout<<"debug "<<x<<endl;
#define rep(i,f,t) for(int i = (f),_end_=(t); i <= _end_; ++i)
#define rep2(i,f,t) for(int i = (f),_end_=(t); i < _end_; ++i)
#define dep(i,f,t) for(int i = (f),_end_=(t); i >= _end_; --i)
#define dep2(i,f,t) for(int i = (f),_end_=(t); i > _end_; --i)
#define clr(c, x) memset(c, x, sizeof(c) )
typedef long long int64;
const int INF = 0x5f5f5f5f;
const double eps = 1e-8;


//*****************************************************


int a[110];
int main()
{
    int n,sum = 0,ans = 0;
    cin>>n;
    for(int i = 1; i <= n; ++i)
    {
        scanf("%d",a+i);
        sum += a[i];
    }
    int ave = sum / n;
    for(int i = 1; i < n; ++i){
        if(a[i] != ave){
            ++ans;
            int tmp = a[i] - ave;
            a[i] = ave;
            a[i+1] += tmp;
        }
    }
    cout<<ans<<endl;
    return 0;
}


 

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

posted @ 2014-12-01 13:11  DSChan  阅读(112)  评论(0编辑  收藏  举报