LightOJ - 1038 Race to 1 Again —— 期望

题目链接:https://vjudge.net/problem/LightOJ-1038

 

1038 - Race to 1 Again
    PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB

Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.

In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output

For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input

Output for Sample Input

3

1

2

50

Case 1: 0

Case 2: 2.00

Case 3: 3.0333333333

 

 

题意:

给出一个数n,每次随机变为它的某一个因子(1~n),直到最后变为1。问n平均多少步操作到达1?

 

题解:

1.假设ci为n的因子,那么:dp[n] = (dp[1]+1 + dp[c2]+1 + dp[c3]+1 + ……  + dp[n]+1)/k,k为因子个数。

2.由于左右两边都有dp[n],那么移项得:dp[n] = (dp[1] + dp[c2] + dp[c3] + ……  + k)/(k-1) 。

 

代码如下:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <vector>
 6 #include <cmath>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 using namespace std;
13 typedef long long LL;
14 const int INF = 2e9;
15 const LL LNF = 9e18;
16 const int MOD = 1e9+7;
17 const int MAXN = 1e5+100;
18 
19 double dp[MAXN];
20 void init()
21 {
22     memset(dp, 0, sizeof(dp));
23     for(int i = 2; i<MAXN; i++)
24     {
25         int cnt = 0; double sum = 0;
26         for(int j = 1; j<=sqrt(i); j++) if(i%j==0) {
27             sum += dp[j];
28             cnt++;
29             if(j!=i/j) sum += dp[i/j], cnt++;
30         }
31         dp[i] = 1.0*(sum+cnt)/(cnt-1);
32     }
33 }
34 
35 
36 int main()
37 {
38     init();
39     int T, n, kase = 0;
40     scanf("%d", &T);
41     while(T--)
42     {
43         scanf("%d",&n);
44         printf("Case %d: %.10lf\n", ++kase, dp[n]);
45     }
46 }
View Code

 

posted on 2018-02-11 16:15  h_z_cong  阅读(148)  评论(0编辑  收藏  举报

导航