LightOJ - 1038 Race to 1 Again —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1038
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input |
Output for Sample Input |
3 1 2 50 |
Case 1: 0 Case 2: 2.00 Case 3: 3.0333333333 |
题意:
给出一个数n,每次随机变为它的某一个因子(1~n),直到最后变为1。问n平均多少步操作到达1?
题解:
1.假设ci为n的因子,那么:dp[n] = (dp[1]+1 + dp[c2]+1 + dp[c3]+1 + …… + dp[n]+1)/k,k为因子个数。
2.由于左右两边都有dp[n],那么移项得:dp[n] = (dp[1] + dp[c2] + dp[c3] + …… + k)/(k-1) 。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 const int MOD = 1e9+7; 17 const int MAXN = 1e5+100; 18 19 double dp[MAXN]; 20 void init() 21 { 22 memset(dp, 0, sizeof(dp)); 23 for(int i = 2; i<MAXN; i++) 24 { 25 int cnt = 0; double sum = 0; 26 for(int j = 1; j<=sqrt(i); j++) if(i%j==0) { 27 sum += dp[j]; 28 cnt++; 29 if(j!=i/j) sum += dp[i/j], cnt++; 30 } 31 dp[i] = 1.0*(sum+cnt)/(cnt-1); 32 } 33 } 34 35 36 int main() 37 { 38 init(); 39 int T, n, kase = 0; 40 scanf("%d", &T); 41 while(T--) 42 { 43 scanf("%d",&n); 44 printf("Case %d: %.10lf\n", ++kase, dp[n]); 45 } 46 }