HDU3667 Transportation —— 最小费用流(费用与流量平方成正比)
题目链接:https://vjudge.net/problem/HDU-3667
Transportation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3083 Accepted Submission(s): 1341
Problem Description
There are N cities, and M directed roads connecting them. Now you want to transport K units of goods from city 1 to city N. There are many robbers on the road, so you must be very careful. The more goods you carry, the more dangerous it is. To be more specific, for each road i, there is a coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely.
You should find out the minimum cost to transport all the goods safely.
Input
There are several test cases. The first line of each case contains three integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0 <= K <= 100). Then M lines followed, each contains four integers (ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
Output
Output one line for each test case, indicating the minimum cost. If it is impossible to transport all the K units of goods, output -1.
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
Sample Output
4
-1
3
Source
Recommend
lcy
题解:
费用与流量平方成正比。详情在《训练指南》P366 。主要方法是拆边。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 const int mod = 1e9+7; 17 const int MAXM = 1e5+10; 18 const int MAXN = 1e2+10; 19 20 struct Edge 21 { 22 int to, next, cap, flow, cost; 23 }edge[MAXM]; 24 int tot, head[MAXN]; 25 int pre[MAXN], dis[MAXN]; 26 bool vis[MAXN]; 27 int N; 28 29 void init(int n) 30 { 31 N = n; 32 tot = 0; 33 memset(head, -1, sizeof(head)); 34 } 35 36 void add(int u, int v, int cap, int cost) 37 { 38 edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost; 39 edge[tot].flow = 0; edge[tot].next = head[u]; head[u] = tot++; 40 edge[tot].to = u; edge[tot].cap = 0; edge[tot].cost = -cost; 41 edge[tot].flow = 0; edge[tot].next = head[v]; head[v] = tot++; 42 } 43 44 bool spfa(int s, int t) 45 { 46 queue<int>q; 47 for(int i = 0; i<N; i++) 48 { 49 dis[i] = INF; 50 vis[i] = false; 51 pre[i] = -1; 52 } 53 54 dis[s] = 0; 55 vis[s] = true; 56 q.push(s); 57 while(!q.empty()) 58 { 59 int u = q.front(); 60 q.pop(); 61 vis[u] = false; 62 for(int i = head[u]; i!=-1; i = edge[i].next) 63 { 64 int v = edge[i].to; 65 if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost) 66 { 67 dis[v] = dis[u]+edge[i].cost; 68 pre[v] = i; 69 if(!vis[v]) 70 { 71 vis[v] = true; 72 q.push(v); 73 } 74 } 75 } 76 } 77 if(pre[t]==-1) return false; 78 return true; 79 } 80 81 int minCostMaxFlow(int s, int t, int &cost) 82 { 83 int flow = 0; 84 cost = 0; 85 while(spfa(s,t)) 86 { 87 int Min = INF; 88 for(int i = pre[t]; i!=-1; i = pre[edge[i^1].to]) 89 { 90 if(Min>edge[i].cap-edge[i].flow) 91 Min = edge[i].cap-edge[i].flow; 92 } 93 for(int i = pre[t]; i!=-1; i = pre[edge[i^1].to]) 94 { 95 edge[i].flow += Min; 96 edge[i^1].flow -= Min; 97 cost += edge[i].cost*Min; 98 } 99 flow += Min; 100 } 101 return flow; 102 } 103 104 int main() 105 { 106 int n, m, K; 107 while(scanf("%d%d%d", &n, &m, &K)!=EOF) 108 { 109 init(n+1); 110 for(int i = 1; i<=m; i++) 111 { 112 int u, v, c, a; 113 scanf("%d%d%d%d", &u, &v, &a, &c); 114 for(int j = 1; j<=c; j++) //拆边 115 add(u, v, 1, (j*2-1)*a); //拆成费用为1 3 5 7 9……的边,每条边的容量为1 116 } 117 add(0, 1, K, 0); 118 119 int min_cost; 120 int start = 0, end = n; 121 int max_flow = minCostMaxFlow(start, end, min_cost); 122 123 if(max_flow<K) printf("-1\n"); 124 else printf("%d\n", min_cost); 125 } 126 }