UVA10600 ACM Contest and Blackout —— 次小生成树

题目链接:https://vjudge.net/problem/UVA-10600

 

In order to prepare the “The First National ACM School Contest” (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well. You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major — find the cost of the two cheapest connection plans.

 

Input

The Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3 < N < 100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai , Bi , Ci , where Ci is the cost of the connection (1 < Ci < 300) between schools Ai and Bi . The schools are numbered with integers in the range 1 to N.

 

Output

For every test case print only one line of output. This line should contain two numbers separated by a single space – the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1 = S2 if and only if there are two cheapest plans, otherwise S1 < S2. You can assume that it is always possible to find the costs S1 and S2. Sample Input 2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 Sample Output 110 121 37 37

 

 

 

题解:

赤裸裸的求最小生成树和次小生成树。

 

代码如下:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #include <cstring>
 5 using namespace std;
 6 typedef long long LL;
 7 const double EPS = 1e-6;
 8 const int INF = 2e9;
 9 const LL LNF = 9e18;
10 const int MOD = 1e9+7;
11 const int MAXN = 1e2+10;
12 
13 int cost[MAXN][MAXN], lowc[MAXN], pre[MAXN], Max[MAXN][MAXN];
14 bool  vis[MAXN], used[MAXN][MAXN];
15 
16 int Prim(int st, int n)
17 {
18     int ret = 0;
19     memset(vis, false, sizeof(vis));
20     memset(used, false, sizeof(used));
21     memset(Max, 0, sizeof(Max));
22 
23     for(int i = 1; i<=n; i++)
24         lowc[i] = (i==st)?0:INF;
25     pre[st] = st;
26 
27     for(int i = 1; i<=n; i++)
28     {
29         int k, minn = INF;
30         for(int j = 1; j<=n; j++)
31             if(!vis[j] && minn>lowc[j])
32                 minn = lowc[k=j];
33 
34         vis[k] = true;
35         ret += minn;
36         used[pre[k]][k] = used[k][pre[k]] = true;  //pre[k]-k的边加入生成树
37         for(int j = 1; j<=n; j++)
38         {
39             if(vis[j] && j!=k)  //如果遇到已经加入生成树的点,则找到两点间路径上的最大权值。
40                 Max[j][k] = Max[k][j] = max(Max[j][pre[k]], lowc[k]);   //k的上一个点是pre[k]
41             if(!vis[j] && lowc[j]>cost[k][j]) //否则,进行松弛操作
42             {
43                 lowc[j] = cost[k][j];
44                 pre[j] = k;
45             }
46         }
47     }
48     return (ret==INF)?-1:ret;
49 }
50 
51 int SMST(int t1 ,int n)
52 {
53     int ret = INF;
54     for(int i = 1; i<=n; i++)   //用生成树之外的一条边去代替生成树内的一条边
55     for(int j = i+1; j<=n; j++)
56     {
57         if(cost[i][j]!=INF && !used[i][j])  //去掉了i-j路径上的某条边,但又把i、j直接连上,所以还是一棵生成树。
58             ret = min(ret, t1+cost[i][j]-Max[i][j]);
59     }
60     return ret;
61 }
62 
63 int main()
64 {
65     int T, n, m;
66     scanf("%d", &T);
67     while(T--)
68     {
69         scanf("%d%d",&n,&m);
70         for(int i = 1; i<=n; i++)
71         for(int j = 1; j<=n; j++)
72             cost[i][j] = (i==j)?0:INF;
73 
74         for(int i = 1; i<=m; i++)
75         {
76             int u, v, w;
77             scanf("%d%d%d", &u, &v, &w);
78             cost[u][v] = cost[v][u] = w;
79         }
80 
81         int t1 = Prim(1, n);
82         int t2 = SMST(t1, n);
83         printf("%d %d\n", t1, t2);
84     }
85 }
View Code

 

posted on 2017-10-30 20:35  h_z_cong  阅读(209)  评论(0编辑  收藏  举报

导航