POJ1182 食物链 —— 种类并查集
题目链接:http://poj.org/problem?id=1182
食物链
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 78133 | Accepted: 23275 |
Description
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3
带权并查集:
带权:r[]数组可以记录当前结点与父节点的关系,可以是大小关系, 可以是逻辑关系(如此题)。对于相同的集合,由于在这棵树中,每个结点与父节点的关系已经确定,那么每个节点与集合中的其他结点的关系也可以一路推导出来。对于两个不同的集合,如果知道一对位于不同集合的结点的关系,那么这两个集合所有的结点之间的关系也可以推导出来了,即两个集合可以合并为一个集合。
路径压缩:对于被find()函数访问过的结点x, 它们的fa[x]都会直接指向根节点,同时需要更新r[x]数组(一路叠加)。问:那么对于被访问过的结点x的子树怎么办呢,不会被落下吗?答:结点x的子树的fa[]指针没有改变,仍然是指着x,即x的子树一直跟着x。
合并:对于两个不同的集合,由于在对u、v调用find()函数时,u和v都分别指向了各自的根节点(路径压缩)。设fu为u所在集合的根节点(也是u的父节点), fv也如此,所以u和fu的关系即为r[u]、v和fv的关系即为r[v],且又知道u和v的关系, 那么就可以直接推出fu和fv的关系,这样就可以实现两个集合的合并。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 5e4+10; 19 20 int n, m; 21 int fa[MAXN], r[MAXN]; 22 23 int find(int x) 24 { 25 if(fa[x]==-1) return x; 26 int pre = find(fa[x]); 27 r[x] = (r[x]+r[fa[x]])%3; 28 return fa[x] = pre; 29 } 30 31 bool Union(int w, int u, int v) 32 { 33 int fu = find(u); 34 int fv = find(v); 35 if(fu==fv) 36 return ((3-w+r[u])%3!=r[v]); 37 38 fa[fu] = fv; 39 r[fu] = (3-r[u]+w+r[v])%3; 40 return false; 41 } 42 43 int main() 44 { 45 scanf("%d%d", &n, &m); 46 memset(r, 0, sizeof(r)); 47 memset(fa, -1, sizeof(fa)); 48 49 int ans = 0; 50 for(int i = 1; i<=m; i++) 51 { 52 int d, u, v; 53 scanf("%d%d%d", &d, &u, &v); 54 if(u>n || v>n) 55 ans++; 56 else if(d==2 && u==v) 57 ans++; 58 else if(Union(d-1, u, v)) 59 ans++; 60 } 61 printf("%d\n", ans); 62 }