POJ3186 Treats for the Cows —— DP

题目链接:http://poj.org/problem?id=3186

 

Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6548   Accepted: 3446

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. 

The treats are interesting for many reasons:
  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? 

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample: 

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2). 

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

Source

 
 
 
一.正向思维:
1.dp[l][r]表示:左边取了l个, 右边取了r个的最大值。
2.枚举左边取了多少个, 再枚举右边取了多少个。
3.对于当前的 dp[l][r],它可以是在dp[l-1][r]的基础上取了a[l];也可以是在dp[l][r-1]的基础上取了a[n+1-r]。所以:
dp[l][r] = max(dp[l-1][r]+a[l], dp[l][r-1]+a[n+1-r])

当然,还需要注意边界条件:l-1>=0,r-1>=0

 
代码如下:
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <vector>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 #define ms(a,b) memset((a),(b),sizeof((a)))
13 using namespace std;
14 typedef long long LL;
15 const double EPS = 1e-8;
16 const int INF = 2e9;
17 const LL LNF = 2e18;
18 const int MAXN = 2e3+10;
19 
20 int n;
21 int a[MAXN], dp[MAXN][MAXN];
22 
23 int main()
24 {
25     while(scanf("%d", &n)!=EOF)
26     {
27         for(int i = 1; i<=n; i++)
28             scanf("%d", &a[i]);
29 
30         memset(dp, 0, sizeof(dp));
31         for(int l = 0; l<=n; l++)
32         for(int r = 0; l+r<=n; r++)
33         {
34             if(l!=0) dp[l][r] = max(dp[l-1][r]+(l+r)*a[l], dp[l][r]);
35             if(r!=0) dp[l][r] = max(dp[l][r], dp[l][r-1]+(l+r)*a[n+1-r]);
36         }
37 
38         int ans = -INF;
39         for(int l = 0; l<=n; l++)
40             ans = max(ans, dp[l][n-l]);
41         printf("%d\n", ans);
42     }
43 }
View Code

 

 
二.逆向思维:
1.逆向推导, 即把过程逆过来,然后就变成了:从中间开始往外取,这样就变成了连续的一段。
2.dp[i][j]表示:区间[i, j]的最大值。
3.枚举区间长度, 然后再枚举起点(终点就确定了)。对于dp[i][j],它可以是在dp[i+1][j]的基础上取了a[i],也可以是在dp[i][j-1]的基础上取了a[j]。两者取其大。
 
 
代码如下:
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <vector>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 #define ms(a,b) memset((a),(b),sizeof((a)))
13 using namespace std;
14 typedef long long LL;
15 const double EPS = 1e-8;
16 const int INF = 2e9;
17 const LL LNF = 2e18;
18 const int MAXN = 2e3+10;
19 
20 int n;
21 int a[MAXN], dp[MAXN][MAXN];
22 
23 int main()
24 {
25     while(scanf("%d", &n)!=EOF)
26     {
27         for(int i = 1; i<=n; i++)
28             scanf("%d", &a[i]);
29 
30         for(int i = 1; i<=n; i++)
31             dp[i][i] = a[i]*n;
32 
33         for(int len = 2; len<=n; len++)
34         for(int i = 1; i+len-1<=n; i++)
35         {
36             int j = i+len-1;
37             dp[i][j] = max(dp[i+1][j]+(n-len+1)*a[i], dp[i][j-1]+(n-len+1)*a[j]);
38         }
39 
40         printf("%d\n", dp[1][n]);
41     }
42 }
View Code

 

三.记忆化搜索:

1.上面的两种方法都要考虑枚举顺序的问题,有时比较不好处理。那么可以用记忆化搜索。

2. 思维与方法二一样,只是写法不同。

 

代码如下:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <vector>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 #define ms(a,b) memset((a),(b),sizeof((a)))
13 using namespace std;
14 typedef long long LL;
15 const double EPS = 1e-8;
16 const int INF = 2e9;
17 const LL LNF = 2e18;
18 const int MAXN = 2e3+10;
19 
20 int n;
21 int a[MAXN], dp[MAXN][MAXN];
22 
23 int dfs(int l, int r)
24 {
25     if(l==r) return n*a[l];
26     if(dp[l][r]!=-1) return dp[l][r];
27     int k = n-r+l;
28 
29     dp[l][r] = max(k*a[l]+dfs(l+1, r), k*a[r]+dfs(l,r-1));
30     return dp[l][r];
31 }
32 
33 int main()
34 {
35     while(scanf("%d", &n)!=EOF)
36     {
37         for(int i = 1; i<=n; i++)
38             scanf("%d", &a[i]);
39 
40         memset(dp, -1, sizeof(dp));
41         printf("%d\n", dfs(1,n));
42     }
43 }
View Code

 

posted on 2017-10-06 11:17  h_z_cong  阅读(205)  评论(0编辑  收藏  举报

导航