poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773
Happy 2006
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 12942 | Accepted: 4557 |
Description
Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).
Output
Output the K-th element in a single line.
Sample Input
2006 1 2006 2 2006 3
Sample Output
1 3 5
Source
POJ Monthly--2006.03.26,static
题意:
求第k个与m互质的数。
题解:
方法一:
如果 gcd(a,b) = 1, 那么成a与b互质。 注:1和任何数都互质。
根据唯一分解定理: 对一个数进行因式分解, 最终必定能分解为多个素数相乘的式子, 且这个式子是唯一的(1除外)。
1.那么我们可以m进行素数分解, 并记录它由哪些素数构成。 如果一个数的分解式中不含有构成m的素数, 那么这个数就与m互素。
2.然后二分答案ans, 如果在ans范围之内, 有>=k个与m互素的数, 那么就缩小范围, 否则扩大范围。
3.那么怎么知道在ans范围内, 有多少个数有m互素呢? 用容斥原理。
方法二:
可知 gcd(a+b*k, b) = gcd(b, a%b), gcd(a, b) = gcd(b, a%b), 所以 gcd(a+b*k, b) = gcd(a, b), k为常数。
这表明了:对于与b互素的数,他们对b取模的余数会周期性出现。 那么我们就只需要计算出在b的范围内, 与b互素的数有哪些就可以了。
然后看第k个与b互素的数是在第几个周期的第几个就可以了。(注意:刚好在周期末时, 需要特判)。
方法一:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <string> 6 #include <vector> 7 #include <cmath> 8 #include <map> 9 #include <set> 10 #include <queue> 11 #include <sstream> 12 #include <algorithm> 13 using namespace std; 14 #define pb push_back 15 #define mp make_pair 16 #define ms(a, b) memset((a), (b), sizeof(a)) 17 typedef long long LL; 18 const double eps = 1e-6; 19 const int INF = 2e9; 20 const LL LNF = 9e18; 21 const int mod = 1e9+7; 22 const int maxn = 1e5+10; 23 24 LL m, k; 25 LL fac[maxn], sum; 26 27 void getFactor() 28 { 29 sum = 0; 30 LL tmp = m; 31 for(LL i = 2; i*i<=tmp; i++) 32 if(tmp%i==0) 33 { 34 fac[sum++] = i; 35 while(tmp%i==0) tmp /= i; 36 } 37 if(tmp>1) fac[sum++] = tmp; 38 } 39 40 LL test(LL tmp) 41 { 42 if(m==1) return tmp; 43 if(tmp==1) return 1; 44 45 LL ret = 0; 46 for(LL s = 1; s < (1<<sum); s++) 47 { 48 LL p = 1, cnt = 0; 49 for(LL j = 0; j<sum; j++) 50 if(s&(1<<j)) 51 { 52 p *= fac[j]; 53 cnt++; 54 } 55 ret += (cnt&1)?(tmp/p):(-tmp/p); 56 } 57 return tmp - ret; 58 } 59 60 int main() 61 { 62 while(scanf("%lld%lld",&m,&k)!=EOF) 63 { 64 getFactor(); 65 LL l = k, r = LNF; 66 while(l<=r) 67 { 68 LL mid = (l+r)>>1; 69 if(test(mid)>=k) 70 r = mid - 1; 71 else 72 l = mid + 1; 73 } 74 printf("%lld\n", l); 75 } 76 return 0; 77 }
方法二:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <string> 6 #include <vector> 7 #include <cmath> 8 #include <map> 9 #include <set> 10 #include <queue> 11 #include <sstream> 12 #include <algorithm> 13 using namespace std; 14 #define pb push_back 15 #define mp make_pair 16 #define ms(a, b) memset((a), (b), sizeof(a)) 17 typedef long long LL; 18 const double eps = 1e-6; 19 const int INF = 2e9; 20 const LL LNF = 9e18; 21 const int mod = 1e9+7; 22 const int maxn = 1e6+10; 23 24 int pri[maxn]; 25 26 int gcd(int a, int b) 27 { 28 return b==0?a:gcd(b, a%b); 29 } 30 31 int main() 32 { 33 int m, k, sum; 34 while(cin>>m>>k) 35 { 36 sum = 0; 37 for(int i = 1; i<=m; i++) 38 if(gcd(i,m)==1) 39 pri[sum++] = i; 40 41 if(k%sum) 42 cout<< (k/sum)*m+pri[(k%sum-1)] <<endl; 43 else 44 cout<< (k/sum-1)*m+pri[sum-1] <<endl; 45 } 46 return 0; 47 }