HDU2586 How far away? —— 倍增LCA
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586
How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 16425 Accepted Submission(s): 6252
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always
unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
Sample Output
10 25 100 100
题解:
1.可知这是一棵无根树,那么把它转化为有根树,再用倍增LCA求出每个结点到根节点的距离。
2.两点的距离:dist = dis[u] + dis[v] - 2 * dis[ LCA(u,v) ]。
3.复杂度O(nlogn)。
对倍增LCA的理解:
对于每一个结点,由于在倍增的时候,每个祖先以及每条边只会被扫过一次,不会出现重复,所以可以用倍增LCA求距离。
代码如下:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <cmath> #include <queue> #include <stack> #include <map> #include <string> #include <set> #define ms(a,b) memset((a),(b),sizeof((a))) using namespace std; typedef long long LL; const int INF = 2e9; const LL LNF = 9e18; const int mod = 1e9+7; const int maxn = 4e4+10; const int DEG = 20; int n, m; struct edge { int to, w, next; }edge[maxn*2]; int head[maxn], tot; int fa[maxn][DEG], deg[maxn], dis[maxn]; void add(int u, int v, int w) { edge[tot].to = v; edge[tot].w = w; edge[tot].next = head[u]; head[u] = tot++; } void bfs(int root) //一边建树,一边求出每个节点到根节点的距离,以及深度 { queue<int>que; deg[root] = 0; dis[root] = 0; fa[root][0] = root; que.push(root); while(!que.empty()) { int tmp = que.front(); que.pop(); for(int i = 1; i<DEG; i++) fa[tmp][i] = fa[fa[tmp][i-1]][i-1]; for(int i = head[tmp]; i!=-1; i = edge[i].next) { int v = edge[i].to, w = edge[i].w; if(v==fa[tmp][0]) continue; deg[v] = deg[tmp]+1; dis[v] = dis[tmp]+w; fa[v][0] = tmp; que.push(v); } } } int LCA(int u, int v) { if(deg[u]>deg[v]) swap(u,v); int hu = deg[u], hv = deg[v]; int tu = u, tv = v; for(int det = hv-hu, i = 0; det; det>>=1, i++) if(det&1) tv = fa[tv][i]; if(tv==tu) return tu; for(int i = DEG-1; i>=0; i--) { if(fa[tu][i]==fa[tv][i]) continue; tu = fa[tu][i]; tv = fa[tv][i]; } return fa[tu][0]; } int main() { int T; cin>>T; while(T--) { tot = 0; ms(head, -1); scanf("%d%d",&n,&m); for(int i = 1; i<n; i++) { int u, v, w; scanf("%d%d%d",&u,&v,&w); add(u,v,w); add(v,u,w); } bfs(1); for(int i = 0; i<m; i++) { int u, v; scanf("%d%d",&u,&v); printf("%d\n", dis[u]+dis[v]-2*dis[LCA(u,v)]); } } }