Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3 1 2 1 1 0 3 1 6 3 5
7 0
5 3 1 1 1 1 1 1 1 5 2 4 1 3
9 4 4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:
给出一个序列,作m此查询,每次查询的内容为:在区间[l, r]内,有多少个子区间的异或和为k?
题解:
莫队算法:解决区间询问的离线方法,时间复杂度:O(n^1.5)。
代码如下:
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 const int INF = 2e9; 5 const LL LNF = 9e18; 6 const int mod = 1e9+7; 7 const int maxn = 1e5+10; 8 9 int n, m, k, w, a[maxn]; 10 LL sum, ans[maxn], c[2000000]; 11 //a[i]为前缀异或和,c[i]为在当前区间内,前缀异或和(从1开始)为i的个数。 12 //可知:a[l-1]^a[r] = val[l]^val[l+1]^………^val[r] 13 14 struct node 15 { 16 int l, r, id; 17 bool operator<(const node &x)const{ 18 if(l/w==x.l/w) return r<x.r; 19 return l/w<x.l/w; 20 } 21 }q[maxn]; 22 23 void del(int i) 24 { 25 c[a[i]]--; 26 sum -= c[a[i]^k]; 27 } 28 29 void add(int i) 30 { 31 sum += c[a[i]^k]; 32 c[a[i]]++; 33 } 34 35 int main() 36 { 37 scanf("%d%d%d",&n,&m,&k); 38 for(int i = 1; i<=n; i++) 39 { 40 scanf("%d",&a[i]); 41 a[i] ^= a[i-1]; 42 } 43 for(int i = 1; i<=m; i++) 44 { 45 scanf("%d%d",&q[i].l,&q[i].r); 46 q[i].id = i; 47 } 48 49 w = sqrt(n); 50 sort(q+1,q+1+m); 51 52 int L = 1, R = 0; 53 c[0] = 1, sum = 0; 54 for(int i = 1; i<=m; i++) 55 { 56 while(L<q[i].l) del(L-1), L++; 57 while(L>q[i].l) L--, add(L-1); 58 while(R<q[i].r) R++, add(R); 59 while(R>q[i].r) del(R), R--; 60 ans[q[i].id] = sum; 61 } 62 63 for(int i = 1; i<=m; i++) 64 printf("%lld\n",ans[i]); 65 return 0; 66 }