Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

题目链接:http://codeforces.com/problemset/problem/617/E


 

E. XOR and Favorite Number
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.

Input

The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 0000 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Examples
input
6 2 3
1 2 1 1 0 3
1 6
3 5
output
7
0
input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
output
9
4
4
Note

In the first sample the suitable pairs of i and j for the first query are: (12), (14), (15), (23), (36), (56), (66). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.



 

题意:

给出一个序列,作m此查询,每次查询的内容为:在区间[l, r]内,有多少个子区间的异或和为k?

 

题解:

莫队算法:解决区间询问的离线方法,时间复杂度:O(n^1.5)。

 

 

代码如下:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long LL;
 4 const int INF = 2e9;
 5 const LL LNF = 9e18;
 6 const int mod = 1e9+7;
 7 const int maxn = 1e5+10;
 8 
 9 int n, m, k, w, a[maxn];
10 LL sum, ans[maxn], c[2000000];
11 //a[i]为前缀异或和,c[i]为在当前区间内,前缀异或和(从1开始)为i的个数。
12 //可知:a[l-1]^a[r] = val[l]^val[l+1]^………^val[r]
13 
14 struct node
15 {
16     int l, r, id;
17     bool operator<(const node &x)const{
18         if(l/w==x.l/w) return r<x.r;
19         return l/w<x.l/w;
20     }
21 }q[maxn];
22 
23 void del(int i)
24 {
25     c[a[i]]--;
26     sum -= c[a[i]^k];
27 }
28 
29 void add(int i)
30 {
31     sum += c[a[i]^k];
32     c[a[i]]++;
33 }
34 
35 int main()
36 {
37     scanf("%d%d%d",&n,&m,&k);
38     for(int i = 1; i<=n; i++)
39     {
40         scanf("%d",&a[i]);
41         a[i] ^= a[i-1];
42     }
43     for(int i = 1; i<=m; i++)
44     {
45         scanf("%d%d",&q[i].l,&q[i].r);
46         q[i].id = i;
47     }
48 
49     w = sqrt(n);
50     sort(q+1,q+1+m);
51 
52     int L = 1, R = 0;
53     c[0] = 1, sum = 0;
54     for(int i = 1; i<=m; i++)
55     {
56         while(L<q[i].l) del(L-1), L++;
57         while(L>q[i].l) L--, add(L-1);
58         while(R<q[i].r) R++, add(R);
59         while(R>q[i].r) del(R), R--;
60         ans[q[i].id] = sum;
61     }
62 
63     for(int i = 1; i<=m; i++)
64         printf("%lld\n",ans[i]);
65     return 0;
66 }
View Code

 

posted on 2018-01-19 16:02  h_z_cong  阅读(170)  评论(0编辑  收藏  举报

导航