距离LCA离线算法Tarjan + dfs + 并查集

距离B - Distance in the Tree

还是普通的LCA但是要求的是两个节点之间的距离,学到了一些

一开始我想用带权并查集进行优化,但是LCA合并的过程晚于离线计算的过程,所以路径长度会有所偏差

所以失败告终

网上查询之后懂得要提前进行一下预处理,在输入完全部的边之后,也就是数形成之后,计算dis——》也就是每个点到树根的长度

之后进行询问查询时:u,v 和 rt 这样uv的距离就是dis[u] + dis[v] - 2 * dis[rt]很好理解

时间复杂度也还可以

#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
const int maxn = 5e4 + 50;
const int maxm = 7e4 + 6e3;
int id[maxn],qid[maxn];
int cnt,qcnt;
int pre[maxn],cost[maxn];
int vis[maxn];
struct node{
    int to,pre,cost;
}e[maxn * 2];
struct node2{
    int to,ads,pre;
}q[maxm * 2];
int ans[maxm];
int Find(int x)
{
    //cout<<x<<endl;
    if(pre[x] == x)return x;
    else
    {
        //cost[x] += cost[pre[x]];
        return pre[x] = Find(pre[x]);
    }
}

void join(int a,int b)
{
    int fa = Find(a),fb = Find(b);
    if(fa != fb)
    {
        pre[fb] = fa;
    }
}

void init(int n)
{
    for(int i = 0;i <= n;i++)
    {
        pre[i] = i;
        vis[i] = 0;
        cost[i] = 0;
    }
    memset(id,-1,sizeof(id));
    memset(qid,-1,sizeof(qid));
    cnt = qcnt = 0;
}

void add(int from,int to,int cost)
{
    e[cnt].to = to;
    e[cnt].pre = id[from];
    e[cnt].cost = cost;
    id[from] = cnt++;
}
void qadd(int from,int to,int i)
{
    q[qcnt].to = to;
    q[qcnt].ads = i;
    q[qcnt].pre = qid[from];
    qid[from] = qcnt++;
}
void get_cost(int rt,int dis)
{
    vis[rt] = 1;
    cost[rt] = dis;
    for(int i = id[rt];~i;i = e[i].pre)
    {
        int to = e[i].to;
        int cos = e[i].cost;
        if(!vis[to])
        {
            get_cost(to,dis+cos);
        }
    }
}
void tarjan(int rt)
{
    //cout<<rt<<endl;
    vis[rt] = -1;
    for(int i = id[rt];~i;i = e[i].pre)
    {
        int to = e[i].to;
        int cos = e[i].cost;
        if(!vis[to])
        {
            tarjan(to);
            join(rt,to);
        }
        //cout<<"cs"<<to<<" "<<cost[to]<<endl;
    }

    vis[rt] = 1;
    for(int i = qid[rt];~i;i = q[i].pre)
    {
        int to = q[i].to;
        if(vis[to] == 1)
        {
            //cout<<"to :   "<<to<<endl;
            //cout<<"pre[to]:  "<<pre[to]<<endl;
            //cout<<rt<<" "<<to<<"cost: "<<cost[rt]<<" "<<cost[to]<<endl;
            int lca = Find(to);
            ans[q[i].ads] = abs(cost[lca] - cost[rt]) + abs(cost[lca] - cost[to]);
        }
    }
}
int main()
{
    int n,m,u,v,w;
    scanf("%d",&n);
    init(n);
    for(int i = 1;i < n;++i)
    {
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);
        add(v,u,w);
    }
    get_cost(0,0);
    memset(vis,0,sizeof(vis));
    scanf("%d",&m);
    for(int i = 1;i <= m;++i)
    {
        scanf("%d%d",&u,&v);
        qadd(u,v,i);
        qadd(v,u,i);
    }
    tarjan(0);
    for(int i = 1;i <= m;++i)
    {
        printf("%d\n",ans[i]);
    }
    return 0;
}
/*
7
0 1 1
0 2 1
0 3 1
1 4 1
2 5 1
2 6 1
40
0 1
0 2
0 3
0 4
0 5
0 6
0 0
1 1
1 2
1 3
1 4
1 5
1 6
1 0
2 0
2 1
2 2
2 3
2 4
2 5
2 6
3 0
3 1
3 2
3 3
3 4
3 5
3 6
4 0
4 1
4 2
4 3
4 4
4 5
4 6
5 0
5 1
5 2
5 3
5 4
*/
posted @ 2018-08-06 18:52  Butterflier  阅读(195)  评论(0编辑  收藏  举报