解决hash冲突的方法

 

复制粘贴于:https://www.cnblogs.com/wuchaodzxx/p/7396599.html#H1_2

开放地址法(线性探测法、二次探测、伪随机探测)

再哈希法

链地址法

建立公共溢出区

一、开放定址法

这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:

Hi=(H(key)+di% m   i=1,2,…,n

其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:

1) 线性探测再散列

dii=1,2,3,…,m-1

这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。

2) 二次探测再散列

di=12-1222-22…,k2-k2    ( k<=m/2 )

这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。

3)伪随机探测再散列

di=伪随机数序列。

 

具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。

例如,已知哈希表长度m=11,哈希函数为:H(key)= key  %  11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。

如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元。

如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12% 11 = 2,此时不再冲突,将69填入2号单元。

如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元。

二、再哈希法

这种方法是同时构造多个不同的哈希函数:

Hi=RH1key)  i=1,2,…,k

当哈希地址Hi=RH1key)发生冲突时,再计算Hi=RH2key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。

三、链地址法

这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。

 

四、建立公共溢出区

这种方法的基本思想是:将哈希表分为基本表和溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表。

 

posted @ 2019-04-17 14:50  DDiamondd  阅读(272)  评论(0编辑  收藏  举报
TOP