【LeetCode贪心#11】单调递增的数字(详解)

单调递增的数字

力扣题目链接(opens new window)

给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

示例 1:

  • 输入: N = 10
  • 输出: 9

示例 2:

  • 输入: N = 1234
  • 输出: 1234

示例 3:

  • 输入: N = 332
  • 输出: 299

说明: N 是在 [0, 10^9] 范围内的一个整数

思路

题意解析

题目举的例子有点不太好理解,这里再举一个吧

  • 输入: N = 32
  • 输出: 29

什么意思呢?就是32这个输入数,其不满足各个位数上的数字是单调递增的规则

因此需要找一个比32小但是尽可能大的整数,该整数还要满足各个位数上的数字单调递增的规则

那么29显然是符合条件的

解法

用人脑想可以想到上面情况中29是符合条件的数,但是用算法怎么实现?

如果去遍历nums(32),可以得到nums[i](2)小于nums[i - 1](3)

此时出现了单调递减,不符合条件,需要去找比nums小的一个最大单调递增整数

怎么找?

因为32已经是单调递减了,所以个位上的2无论怎么变化都不能逆转递减的趋势,因此需要把十位减小使整体满足递减的要求,按照上述逻辑可以得到22

因为大于等于都算递增,所以此时的22已经满足单调递增的条件了,接下来需要达成最大整数这个条件

显然22不是小于32的数中满足单调递增的最大整数,在2X中找最大整数,那X只要取9就可以使整体最大,所以满足所有条件的数是29

总结一下:

​ 当遍历遇到单调递减的两位数时,可以直接将十位数减1,然后个位取9,得到小于当前这两位数的最大单调递增整数

​ 这里也可以确认 ,遍历时我们是两个两个数来判断是否符合条件的

遍历nums的顺序

问题又来了,遍历nums的顺序是什么呢?

先说结论,应该从后先前遍历

举个例子:

  • 输入: N = 332
  • 输出: 299

如果从前向后遍历,过程如下:

​ 先得到33,33满足单调递增条件,不管

​ 然后得到32,不满足条件,按照上面的逻辑找到小于32有满足条件的最大整数29,遍历结束

​ 此时整体为329,还是不满足条件

​ 原因是从前向后遍历没有将前面判断得到的结果利用起来

在来看从后向前遍历:

​ 先得的32,不满足条件,修改为29,此时整体为329

​ 然后得到32(基于前一步的结果),还是不满足条件,修改为29,此时整体为299,遍历结束

​ 结果正确

修改9的逻辑

上面其实就是全部的解题逻辑了,但是按照上面的讨论去实现代码时会发现有问题,每次遇到单调递减的数时我们会下意识的直接把9给换到相应位置,但其实这样会出错

举个例子:

  • 输入: N = 3232
  • 输出: 2999

这个例子的正确答案是2999,如果在实现时按照上面的问题逻辑来的话,得到的结果会是2929

先不说它是不是最大的吧,它就不满足单调递增

因此我们需要一个变量,记录最后一次要改9的位置,然后将其后位置的所有数全部改成9

3  2  3  2
      ↑  ↑
     i-1 i

i 处要改9,此时,flag == 3

3  2  3  2
   ↑  ↑
  i-1 i

此时flag还是3

 3  2  3  2
 ↑  ↑
i-1 i

i 处要改9,此时,flag == 1

遍历结束,将flag往后的所有数都改成9,得到正确结果2999

注意,flag的初始值应该指向数组末尾

代码

注意这里给的输入是一个int,要先把其转化为str才能遍历

然后改完记得再转回来(使用stoi函数

class Solution {
public:
    int monotoneIncreasingDigits(int n) {
        string strNum = to_string(n);
        int flag = strNum.size();//flag初始值应该指向数组末尾
        for(int i = strNum.size() - 1; i > 0; --i){
            if(strNum[i - 1] > strNum[i]){//单调递减
                strNum[i - 1]--;
                // strNum[i] = '9';
                flag = i;//记录要修改9的位置
            }
        }//遍历完成,找到要修改9的位置

        for(int i = flag; i < strNum.size(); ++i){//将flag后的数全改为9
            strNum[i] = '9';
        }

        int num = stoi(strNum);//转回int
        return num;
    }
};
posted @ 2023-03-21 22:16  dayceng  阅读(115)  评论(0编辑  收藏  举报