计算几何CDQ笔记

1 并集

记A,B是两个集合,以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 。

2 交集

记A,B是两个集合,以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}

3 差集

记A,B是两个集合,则所有属于A且不属于B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差),类似地,对于集合A、B,把集合{x∣x∈A,且x∉B}叫做A与B的差集。

4 补集

记A,U是两个集合,属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}。

5 扩展资料

摩根定律,又叫反演律,用文字语言可以简单的叙述为:两个集合的交集的补集等于它们各自补集的并集,两个集合的并集的补集等于它们各自补集的交集。

若集合A、B是全集U的两个子集,则以下关系恒成立:

(1)∁U(A∩B)=(∁UA)∪(∁UB),即“交之补”等于“补之并”;

(2)∁U(A∪B)=(∁UA)∩(∁UB),即“并之补”等于“补之交”

CDQ分治

1.解决和点对有关的问题。
2.1D 动态规划的优化与转移。
3.通过 CDQ 分治,将一些动态问题转化为静态问题

posted @ 2022-08-21 21:22  DAIANZE  阅读(109)  评论(0编辑  收藏  举报