Luogu 2939 [USACO09FEB]改造路Revamping Trails && Luogu 4568 [JLOI2011]飞行路线
双倍经验
写这两题之前被大佬剧透了呜呜呜。
分层图+最短路。
因为有$k$次机会能够把路径的费用变为$0$,我们可以建$k + 1$层图,对于每一层图我们把原来的边权和双向边连到上面去,而对于层与层之间的连接,对于每一条边,我们连上从下层到上层的有向边,边权为$0$。
这样子其实保证了它并不会向下走,也就是说一定在不断消耗着$k$次机会,对应了使用不超过$k$次机会,这样子的话我们最后只要求出第一层的$st$到第$k + 1$层的$ed$之间的最短路就是答案了。
我使用的是堆优化dijkstra。
时间复杂度$O(nlogn)$,这里的$n$应是$nk$级别的。
Code:
#include <cstdio> #include <cstring> #include <queue> #include <iostream> using namespace std; typedef pair <int, int> pin; const int N = 4e5 + 5; const int M = 3e6 + 5; int n, m, K, tot = 0, head[N], dis[N]; bool vis[N]; struct Edge { int to, nxt, val; } e[M << 1]; inline void add(int from, int to, int val) { e[++tot].to = to; e[tot].val = val; e[tot].nxt = head[from]; head[from] = tot; } inline void read(int &X) { X = 0; char ch = 0; int op = 1; for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') op = -1; for(; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; } inline int id(int depth, int now) { return n * (depth - 1) + now; } priority_queue <pin> Q; void dij(int st) { memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); Q.push(pin(dis[st] = 0, st)); for(; !Q.empty(); ) { int x = Q.top().second; Q.pop(); if(vis[x]) continue; vis[x] = 1; for(int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if(dis[y] > dis[x] + e[i].val) { dis[y] = dis[x] + e[i].val; Q.push(pin(-dis[y], y)); } } } } int main() { // freopen("testdata.in", "r", stdin); read(n), read(m), read(K); int st, ed; st = 1, ed = n; st = id(1, st), ed = id(K + 1, ed); for(int x, y, v, i = 1; i <= m; i++) { read(x), read(y), read(v); for(int j = 1; j <= K + 1; j++) add(id(j, x), id(j, y), v), add(id(j, y), id(j, x), v); for(int j = 1; j <= K; j++) add(id(j, x), id(j + 1, y), 0), add(id(j, y), id(j + 1, x), 0); } dij(st); printf("%d\n", dis[ed]); return 0; }
#include <cstdio> #include <cstring> #include <queue> #include <iostream> using namespace std; typedef pair <int, int> pin; const int N = 2e5 + 5; const int M = 3e6 + 5; int n, m, K, tot = 0, head[N], dis[N]; bool vis[N]; struct Edge { int to, nxt, val; } e[M << 1]; inline void add(int from, int to, int val) { e[++tot].to = to; e[tot].val = val; e[tot].nxt = head[from]; head[from] = tot; } inline void read(int &X) { X = 0; char ch = 0; int op = 1; for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') op = -1; for(; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; } inline int id(int depth, int now) { return n * (depth - 1) + now; } priority_queue <pin> Q; void dij(int st) { memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); Q.push(pin(dis[st] = 0, st)); for(; !Q.empty(); ) { int x = Q.top().second; Q.pop(); if(vis[x]) continue; vis[x] = 1; for(int i = head[x]; i; i = e[i].nxt) { int y = e[i].to; if(dis[y] > dis[x] + e[i].val) { dis[y] = dis[x] + e[i].val; Q.push(pin(-dis[y], y)); } } } } int main() { read(n), read(m), read(K); int st, ed; read(st), read(ed); st = id(1, st + 1), ed = id(K + 1, ed + 1); for(int x, y, v, i = 1; i <= m; i++) { read(x), read(y), read(v); x++, y++; for(int j = 1; j <= K + 1; j++) add(id(j, x), id(j, y), v), add(id(j, y), id(j, x), v); for(int j = 1; j <= K; j++) add(id(j, x), id(j + 1, y), 0), add(id(j, y), id(j + 1, x), 0); } dij(st); printf("%d\n", dis[ed]); return 0; }