Luogu 2149 [SDOI2009]Elaxia的路线

感觉这题可以模板化。

听说spfa死了,所以要练堆优化dijkstra。

首先对$x_{1},y_{1},x_{2},y_{2}$各跑一遍最短路,然后扫一遍所有边看看是不是同时在两个点的最短路里面,如果是的话就把这条边加到一张新图中去,因为最短路一定没有环,所以最后造出来的这张新图一定是一个$DAG$,dp一遍求最长链即为答案。

考虑一下怎么判断一条边是否在最短路里,设这条边连接的两个点是$x$,$y$,边权是$v$,如果它在最短路里面,那么有$dis(x_{1}, x) + v + dis(y_{1}, y) == dis(x_{1}, y_{1})$并且$dis(x_{2}, x) + v + dis(y_{2}, y) == dis(x_{2}, y_{2})$,注意第二个条件中$x$和$y$可以交换。加边的时候注意维持一下$DAG$的形态,可以把$x$和$y$到$x_{1}$的距离小的向距离大的连边。

时间复杂度$O(nlogn)$,堆优化dij是瓶颈。

感觉写得很长。

Code:

#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin;

const int N = 1505;
const int M = 3e6 + 5;
const int inf = 0x3f3f3f3f;

int n, m, inx[M], iny[M], inv[M], deg[N], f[N], ans = 0;
int c1, c2, c3, c4, tot = 0, head[N], dis[N], d[4][N];
bool vis[N];

struct Edge {
    int to, nxt, val;
} e[M << 1];

inline void add(int from, int to, int val) {
    e[++tot].to = to;
    e[tot].val = val;
    e[tot].nxt = head[from];
    head[from] = tot;
}

inline void read(int &X) {
    X = 0; char ch = 0; int op = 1;
    for(; ch > '9'|| ch < '0'; ch = getchar())
        if(ch == '-') op = -1;
    for(; ch >= '0' && ch <= '9'; ch = getchar())
        X = (X << 3) + (X << 1) + ch - 48;
    X *= op;
}

inline void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}

priority_queue <pin> Q;
void dij(int st) {
    memset(dis, 0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    Q.push(pin(dis[st] = 0, st));
    for(; !Q.empty(); ) {
        int x = Q.top().second; Q.pop();
        if(vis[x]) continue;
        vis[x] = 1;
        for(int i = head[x]; i; i = e[i].nxt) {
            int y = e[i].to;
            if(dis[y] > dis[x] + e[i].val) {
                dis[y] = dis[x] + e[i].val;
                Q.push(pin(-dis[y], y));
            }
        }
    }
} 

inline void chkMax(int &x, int y) {
    if(y > x) x = y;
}

int dfs(int x) {
    if(vis[x]) return f[x];
    vis[x] = 1;
    int res = 0;
    for(int i = head[x]; i; i = e[i].nxt) {
        int y = e[i].to;
        chkMax(res, dfs(y) + e[i].val);
    }
    return f[x] = res;
}

int main() {
    read(n), read(m), read(c1), read(c2), read(c3), read(c4);
    for(int i = 1; i <= m; i++) {
        read(inx[i]), read(iny[i]), read(inv[i]);
        add(inx[i], iny[i], inv[i]), add(iny[i], inx[i], inv[i]);
    }
    
    dij(c1); memcpy(d[0], dis, sizeof(d[0]));
    dij(c2); memcpy(d[1], dis, sizeof(d[1]));
    dij(c3); memcpy(d[2], dis, sizeof(d[2]));
    dij(c4); memcpy(d[3], dis, sizeof(d[3]));
    
/*    for(int i = 1; i <= n; i++)
        printf("%d ", d[0][i]);
    printf("\n");
    for(int i = 1; i <= n; i++)
        printf("%d ", d[1][i]);
    printf("\n");
    for(int i = 1; i <= n; i++)
        printf("%d ", d[2][i]);
    printf("\n");
    for(int i = 1; i <= n; i++)
        printf("%d ", d[3][i]);
    printf("\n");   */

    
    tot = 0; memset(head, 0, sizeof(head));
    for(int i = 1; i <= m; i++) {
        int x = inx[i], y = iny[i], v = inv[i];
        if(d[0][x] + v + d[1][y] == d[0][c2])
            if(d[2][y] + v + d[3][x] == d[2][c4] || d[2][x] + v + d[3][y] == d[2][c4]) {
                if(d[0][x] < d[0][y]) {
                    add(x, y, v);
                    deg[y]++;
                } else {
                    add(y, x, v);
                    deg[x]++;
                }
            }
        
        swap(x, y);
        if(d[0][x] + v + d[1][y] == d[0][c2])
            if(d[2][y] + v + d[3][x] == d[2][c4] || d[2][x] + v + d[3][y] == d[2][c4]) {
                if(d[0][x] < d[0][y]) {
                    add(x, y, v);
                    deg[y]++;
                } else {
                    add(y, x, v);
                    deg[x]++;
                }
            }
    }
    
    memset(vis, 0, sizeof(vis));
    for(int i = 1; i <= n; i++) 
        if(deg[i] == 0 && !vis[i]) dfs(i);
    
/*    for(int i = 1; i <= n; i++)
        printf("%d ", f[i]);
    printf("\n");   */
    
    for(int i = 1; i <= n; i++)
        chkMax(ans, f[i]);
    
    printf("%d\n", ans);
    return 0;    
}
View Code

 

posted @ 2018-09-08 12:37  CzxingcHen  阅读(99)  评论(0编辑  收藏  举报