NOIP 模拟 路径求和 - Tarjan+dfs+码
题目大意:
各一个奇环内向森林,求每两个点对间的距离之和。无法到达则距离为-1.
分析:
首先Tarjan找出size大于1的连通分量(环),环中的边的贡献可以单独计算。
然后从入度为0的点向内dfs,直到遇见size大于1的环。记录每个点的to_size(朝向环方向有多少个节点),from_size(朝向入度为0的方向有多少个节点),还需要配合拓扑。这一步完成后,
单独的边的贡献就可以算出来了。
接下来计算单独的边与环接上的部分对环上的边的贡献增量。在上面dfs时,就可以将环上碰到的第一个点打上标记mark,表示有多少个点通过此点进入联通块,然后对于每个环中每个有标记的点,可以通过预处理得到bin(一个标记的增量),答案增量就是(mark * bin[size-1])。
最后就是减去不互通的点对。将size>1的联通块中的每个点的tosize置为1,贡献就是\(-\sum{(n - tosize_i)}\).
code
#pragma GCC optimize("O3")
#include<bits/stdc++.h>
using namespace std;
namespace IO{
template<typename T>
inline void read(T &x){
T i = 0, f = 1; char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch <= '9' && ch >= '0'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
x = i * f;
}
template<typename T>
inline void wr(T x){
if(x < 0) x = -x, putchar('-');
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
}using namespace IO;
const int N = 5e5 + 50, mod = 1e9 + 7;
typedef long long ll;
int n, vt;
struct node{
node *to;
ll dis;
ll bin;
int from_size;
int to_size;
int low;
int id;
int dfn;
int deg;
int in_deg;
int sccno;
int vst;
int mark;
node():to(NULL), from_size(0), to_size(0), in_deg(0), low(0), dfn(0), deg(0), sccno(0), vst(0), mark(0), dis(0), bin(0){}
}*point[N], pool[N], *tail = pool;
ll clk, scc_cnt;
ll ans, bin[N];
vector<node*> cir[N];
stack<node*> stk;
queue<node*> que;
inline void Tarjan(node *u){
u->low = u->dfn = ++clk;
stk.push(u);
node *v = u->to;
if(!v->dfn){
Tarjan(v);
u->low = min(u->low, v->low);
}
else if(!v->sccno)
u->low = min(u->low, v->dfn);
if(u->low == u->dfn){
node *x;
scc_cnt++;
for(; ; ) {
x = stk.top();
stk.pop();
x->sccno = scc_cnt;
cir[scc_cnt].push_back(x);
if(x == u) break;
}
}
}
inline void dfs(node *u){
u->to_size = cir[u->sccno].size();
u->vst = vt;
if(u->to == u) return;
if(cir[u->to->sccno].size() > 1) {
u->to_size += cir[u->to->sccno].size();
return;
}
if(u->to->vst == vt){
u->to_size += u->to->to_size;
return;
}
dfs(u->to);
u->to_size += u->to->to_size;
}
inline void dfs2(node *u){
u->vst = vt;
if(u->to == u) return;
if(cir[u->to->sccno].size() > 1) {
u->to->mark += 1ll*u->from_size;
return;
}
if(u->to->vst == vt) return;
dfs2(u->to);
}
inline void init_bin(int k){
ll sum = 0;
for(register int i = 0, s = cir[k].size(); i < s; i++) sum = (sum + cir[k][i]->dis) % mod;
node *now = cir[k][0], *last;
for(register int i = 0, s = cir[k].size(); i < s; i++) cir[k][0]->bin = (now->dis * (s - i - 1) + cir[k][0]->bin) % mod, now = now->to;
last = now;
now = cir[k][0]->to;
for(register int i = 1, s = cir[k].size(); i < s; i++){
now->bin = (last->bin - 1ll*last->dis * (s - 1) + sum - last->dis) % mod;
last = now, now = now->to;
}
}
int main(){
int _q=50<<20;
char *_p=(char*)malloc(_q)+_q;
__asm__("movl %0, %%esp\n"::"r"(_p));
read(n);
for(register int i = 1; i <= n; i++) bin[i] = (bin[i - 1] + i) % mod;
for(register int i = 1; i <= n; i++) point[i] = tail++, point[i]->id = i;
for(register int i = 1; i <= n; i++){
int x;
ll dis;
read(x);
read(dis);
point[i]->to = point[x];
point[i]->dis = dis;
if(x != i) point[x]->in_deg++, point[x]->deg++;
}
for(register int i = 1; i <= n; i++)
if(!point[i]->dfn)
Tarjan(point[i]);
vt++;
for(register int i = 1; i <= n; i++){
if(cir[point[i]->sccno].size() <= 1) point[i]->from_size = 1;
if(!point[i]->in_deg)
dfs(point[i]), que.push(point[i]);
}
while(!que.empty()){
node *u = que.front(); que.pop();
if(cir[u->to->sccno].size() > 1) continue;
u->to->from_size += u->from_size;
if(!(--u->to->deg)) que.push(u->to);
}
vt++;
for(register int i = 1; i <= n; i++)
if(!point[i]->in_deg)
dfs2(point[i]);
for(register int i = 1; i <= n; i++)
ans = (ans + 1ll*point[i]->dis * (point[i]->to_size - 1) * point[i]->from_size) % mod;
for(register int i = 1; i <= scc_cnt; i++){
if(cir[i].size() <= 1) continue;
init_bin(i);
for(register int j = 0, s = cir[i].size(); j < s; j++){
ans = (ans + 1ll*cir[i][j]->mark * cir[i][j]->bin) % mod;
ans = (ans + 1ll*cir[i][j]->dis * bin[s - 1]) % mod;
}
}
for(register int i = 1; i <= n; i++){
if(cir[point[i]->sccno].size() > 1) point[i]->to_size = cir[point[i]->sccno].size();
ans = ((ans - (n - point[i]->to_size)) % mod + mod) % mod;
}
wr((ans % mod + mod) % mod);
return 0;
}