NOIP 模拟 序列操作 - 无旋treap
题意:
一开始有n个非负整数h[i],接下来会进行m次操作,第i次会给出一个数c[i],要求选出c[i]个大于0的数并将它们-1,问最多可以进行多少次?
分析:
首先一个显然的贪心就是每次都将最大的c[i]个数-1,于是就可以用无旋式treap来维护,基本操作中split_k和split_v都使用普通的merge,但在提取区间并打完标记后,因为整个序列的单调性发生改变,需要使用启发式合并(只在修改过后使用)。
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<vector>
#include<ctime>
#include<queue>
using namespace std;
template<typename T>
inline void read(T &x) {
T i = 0, f = 1;
char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
x = i * f;
}
template<typename T>
inline void wr(T x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
const int N = 1e6 + 50, OO = 0x3f3f3f3f;
int n, m, h[N], c[N];
inline int Rand(){
static int RAND_VAL = 1388593021;
return RAND_VAL += RAND_VAL << 2 | 1;
}
#define SZ(x) (x?x->sze:0)
#define V(x) (x?x->val:OO)
struct node{
node *lc, *rc;
int sze, pri, val, tag;
node():lc(NULL), rc(NULL){}
inline void add(int v){
val += v, tag += v;
}
inline void pushDown(){
if(tag != 0){
if(lc) lc->add(tag);
if(rc) rc->add(tag);
tag = 0;
}
}
inline node* upt(){
sze = SZ(lc) + SZ(rc) + 1;
return this;
}
inline void print(){
pushDown();
if(lc) lc->print();
cout<< val<<" ";
if(rc) rc->print();
}
}pool[N], *tail = pool, *rt = NULL;
inline node* newNode(int v){
node *x = tail++;
x->val = v;
x->lc = x->rc = NULL;
x->pri = Rand();
x->tag = 0;
x->sze = 1;
return x;
}
inline node* Merge_o(node *x, node *y){
if(!x) return y;
if(!y) return x;
node *L, *R;
if(x->pri < y->pri){
x->pushDown();
x->rc = Merge_o(x->rc, y);
return x->upt();
}
else {
y->pushDown();
y->lc = Merge_o(x, y->lc);
return y->upt();
}
}
inline void Split_v(node *x, int v, node *&L, node *&R);
inline node* Merge(node *x, node *y){
if(!x) return y;
if(!y) return x;
x->pushDown(), y->pushDown();
if(x->pri > y->pri) swap(x, y);
node *L, *R;
Split_v(y, x->val, L, R);
x->lc = Merge(x->lc, L);
x->rc = Merge(x->rc, R);
x->upt();
return x;
}
inline void Split_k(node *x, int k, node *&L, node *&R){
if(x == NULL){L = NULL, R = NULL; return;}
x->pushDown();
if(SZ(x->lc) < k){
Split_k(x->rc, k - SZ(x->lc) - 1, L, R);
x->rc = NULL; x->upt();
L = Merge_o(x, L);
}
else{
Split_k(x->lc, k, L, R);
x->lc = NULL; x->upt();
R = Merge_o(R, x);
}
}
inline void Split_v(node *x, int v, node *&L, node *&R){
if(x == NULL){L = NULL, R = NULL; return;}
x->pushDown();
if(V(x) <= v){
Split_v(x->rc, v, L, R);
x->rc = NULL; x->upt();
L = Merge_o(x, L);
}
else{
Split_v(x->lc, v, L, R);
x->lc = NULL, x->upt();
R = Merge_o(R, x);
}
}
inline node* build(){
static node* stk[N];
node* pre;
int top = 0;
for(register int i = 1; i <= n; i++){
node *x = newNode(h[i]);
pre = NULL;
while(top && stk[top]->pri > x->pri)
pre = stk[top]->upt(), stk[top--] = NULL;
if(stk[top]) stk[top]->rc = x;
x->lc = pre; stk[++top] = x;
}
while(top) stk[top--]->upt();
return stk[1];
}
int main(){
freopen("h.in", "r", stdin);
read(n), read(m);
for(register int i = 1; i <= n; i++) read(h[i]);
for(register int i = 1; i <= m; i++) read(c[i]);
sort(h + 1, h + n + 1);
rt = build();
for(register int i = 1; i <= m; i++){
if(!c[i]) continue;
if(c[i] > n){
wr(i - 1);
return 0;
}
node *L, *R, *p, *q;
Split_v(rt, 0, L, R);
if(SZ(R) >= c[i]){
Split_k(R, SZ(R) - c[i], p, q);
if(q) q->add(-1);
R = Merge(p, q);
}
else{
wr(i - 1);
return 0;
}
rt = Merge(L, R);
}
wr(m);
return 0;
}