vijos1070 新年趣事之游戏 - 次小生成树
题目大意:
求原图的最小生成树,和次小生成树。
题目分析:
kruskals求mst(\(O(mlogm)\))
考虑次小生成树暴力的做法,因为次小生成树总是由最小生成树删掉一条边并添加一条边得到的,所以可以枚举最小生成树上的每一条边删去,再重新求一遍mst。(\(O(m^2logm)\))
下面的题解来自转载:(\(O(n^2(求最大权值) + mlogm(求最小生成树) + m(求次小))\))
code
#include<bits/stdc++.h>
using namespace std;
const int N = 550, M = 150050, OO = 0x3f3f3f3f;
int n, ans, m;
struct node{
int x, y, dis;
inline bool operator < (const node &b) const{
return dis < b.dis;
}
}edge[M];
int d[N][N];
bool vst[N], used[M];
namespace mst{
int ecnt, adj[N], nxt[M << 1], go[M << 1], len[M << 1];
inline void addEdge(int u, int v, int c){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, len[ecnt] = c;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u, len[ecnt] = c;
}
int anc[N];
inline int getAnc(int x){
return x == anc[x] ? x : (anc[x] = getAnc(anc[x]));
}
inline int kruskals(){
int ret = 0;
sort(edge + 1, edge + m + 1);
for(int i = 1; i <= m; i++){
int fx = getAnc(edge[i].x), fy = getAnc(edge[i].y);
if(fx != fy) anc[fx] = fy, ret += edge[i].dis, addEdge(edge[i].x, edge[i].y, edge[i].dis), used[i] = true;
}
return ret;
}
inline void dfs(int now, int u, int f, int mx){
d[now][u] = d[u][now] = mx;
for(int e = adj[u]; e; e = nxt[e]){
int v = go[e];
if(v == f) continue;
dfs(now, v, u, max(mx, len[e]));
}
}
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) mst::anc[i] = i;
for(int i = 1; i <= m; i++){
int x, y, c; scanf("%d%d%d", &x, &y, &c);
edge[i] = (node){x, y, c};
}
ans = mst::kruskals();
if(n - 1 == mst::ecnt / 2) printf("Cost: %d\n", ans);
else printf("Cost: -1\nCost: -1\n");
int ans1 = OO;
for(int i = 1; i <= n; i++)
mst::dfs(i, i, 0, 0);
for(int i = 1; i <= m; i++){
if(used[i]) continue;
int x = edge[i].x, y = edge[i].y;
ans1 = min(ans1, ans - d[x][y] + edge[i].dis);
}
if(ans1 != OO) printf("Cost: %d", ans1);
else printf("Cost: -1");
return 0;
}