BZOJ 1855 股票交易 - 单调队列优化dp
题目分析:
\(f[i][j]\)表示第i天,手中拥有j份股票的最优利润。
- 如果不买也不卖,那么$$f[i][j] = f[i-1][j]$$
- 如果买入,那么$$f[i][j] = max{f[i - w - 1][k] - A_p*(j - k)} (j - as + 1 \le k \le j)$$由于是从小的更新大的,所以顺序
- 如果卖出,那么$$f[i][j] = max{f[i - w - 1][k] + B_p*(k - j)} (j \le k \le j + bs - 1)$$由于是从大更新小的,所以倒序
现在已经得到了一个\(n^3\)转移的方法,现在来考虑如何优化成\(n^2\)。
形如这样的方程,具有决策单调性,可以使用单调队列优化。将上面推得的后两个方程整理得
\[f[i][j] = max\{(f[i - w - 1][k] + A_p * k) - A_p * j\}
\]
\[f[i][j] = max\{(f[i - w - 1][k] + B_p * k) - B_p *j)\}
\]
中间括号前的用单调队列维护单调性,每次插入时更新决策。
code
#include<bits/stdc++.h>
using namespace std;
const int N = 2005, OO = 0x3f3f3f3f;
int n, w, maxp;
int f[N][N], ans;
typedef pair<int, int> P;
P que[N];
struct node{
int ap, bp, as, bs;
}d[N];
int main(){
scanf("%d%d%d", &n, &maxp, &w);
for(register int i = 1; i <= n; i++)
scanf("%d%d%d%d", &d[i].ap, &d[i].bp, &d[i].as, &d[i].bs);
memset(f, -OO, sizeof f);
for(register int i = 1; i <= n; i++){
for(register int j = 0; j <= d[i].as; j++) f[i][j] = -d[i].ap * j; //初始化为只买股票
for(register int j = 0; j <= maxp; j++) f[i][j] = max(f[i][j], f[i - 1][j]);
if(i - w - 1 >= 0){
register int head = 1, tail = 0;
for(register int j = 0; j <= maxp; j++){ //从小的转移,顺序
while(head <= tail && que[head].first < j - d[i].as) head++;
while(head <= tail && que[tail].second <= f[i - w - 1][j] + d[i].ap * j) tail--;
que[++tail] = P(j, f[i - w - 1][j] + d[i].ap * j);
if(head <= tail) f[i][j] = max(f[i][j], que[head].second - d[i].ap * j);
}
head = 1, tail = 0;
// for(int j = 0; j <= maxp; j++){ //错误
for(register int j = maxp; j >= 0; j--){ //从大的转移,倒序
while(head <= tail && que[head].first > j + d[i].bs) head++;
while(head <= tail && que[tail].second <= f[i - w - 1][j] + d[i].bp * j) tail--;
que[++tail] = P(j, f[i - w - 1][j] + d[i].bp * j);
if(head <= tail) f[i][j] = max(f[i][j], que[head].second - d[i].bp * j);
}
}
}
printf("%d", f[n][0]);
return 0;
}