NOIP 模拟 box - 费用流 / 匈牙利

题目大意:

给出n(\(\le 200\))个盒子,第i个盒子长\(x_i\),宽\(y_i\),一个盒子可以放入长宽都大于等于它的盒子里,并且每个盒子里只能放入一个盒子(可以嵌套),嵌套的盒子的占地面积等于最外层的盒子的占地面积,求最小的占地面积之和。

题目分析:

直接打了贪心,得了50分。用脑子想想就知道第3题怎么可能这么简单,果真。
本题的本质就是能不能给一个盒子找一个长宽都大于等于它的匹配。

  • 匈牙利+贪心:如果a可以包含b,则连一条边a<-b,然后按照面积从大到小跑匈牙利,如果能够找到一个匹配,就把这个盒子的面积减掉。
  • 费用流: 将一个盒子拆成两个点1~n, n+1~2n, 如果a可以包含b,就连一条a->b+n,流量为1(只能用1个),费用为\(S_b\)的边,最后从s向1n连流量为1,费用为0的边,从n+12n向t连流量为1,费用为0的边,跑最大费用最大流,将费用从总面积中减去。(费用流要去重)

code

匈牙利

#include<bits/stdc++.h>
using namespace std;

namespace IO{
    inline int read(){
        int i = 0, f = 1; char ch = getchar();
        for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
        if(ch == '-') f = -1, ch = getchar();
        for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
        return i * f;
    }
    inline void wr(int x){
        if(x < 0) putchar('-'), x = -x;
        if(x > 9) wr(x / 10);
        putchar(x % 10 + '0');
    }
}using namespace IO;

const int N = 1000;
int n;
struct node{
    int x, y;
    inline bool operator < (const node &b) const{
        return x*y < b.x*b.y;
    }
}box[N];
bool vst[N << 2];
int mateR[N << 2], ecnt, adj[N << 2], nxt[N << 2], go[N << 2], ans, to[N][N];

inline bool hungry(int u){
    for(int i = n; i > u; i--){
        if(!to[u][i]) continue;
        if(vst[i]) continue;
        vst[i] = true;
        if(!mateR[i] || hungry(mateR[i])){
            mateR[i] = u;
            return true;
        }
    }
    return false;
}

inline void addEdge(int u, int v){
    nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v;
}

int main(){
    n = read();
    for(int i = 1; i <= n; i++){
        int x = read(), y = read();
        box[i] = (node){x, y};
    }
    sort(box + 1, box + n + 1);
    for(int i = 1; i <= n; i++){
        ans += box[i].x * box[i].y;
        for(int j = i + 1; j <= n; j++){
            if(box[i].x <= box[j].x && box[i].y <= box[j].y)
                to[i][j] = 1;
        }
    }
    for(int i = n - 1; i >= 1; i--){
        if(hungry(i)) ans -= box[i].x * box[i].y;
        memset(vst, 0, sizeof vst);
    }
    wr(ans);
    return 0;
}

费用流

#include<bits/stdc++.h>
using namespace std;

namespace IO{
    inline int read(){
        int i = 0, f = 1; char ch = getchar();
        for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
        if(ch == '-') f = -1, ch = getchar();
        for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
        return i * f;
    }
    inline void wr(int x){
        if(x < 0) putchar('-'), x = -x;
        if(x > 9) wr(x / 10);
        putchar(x % 10 + '0');
    }
}using namespace IO;

const int N = 205, OO = 0x3f3f3f3f;
int n, ecnt = 1, adj[N << 2], nxt[100050], go[100050], cap[100050], len[100050];
int src, des, dis[N << 2], cur[N << 2], sum;
struct node{
    int x, y;
    inline bool operator < (const node &b) const{
        return x < b.x || (x == b.x && y < b.y);
    }
}box[N], unik[N];

inline void addEdge(int u, int v, int c, int cost){
    nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, cap[ecnt] = c, len[ecnt] = cost;
    nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u, cap[ecnt] = 0, len[ecnt] = -cost;
}

int vt = 0;
inline bool SPFA(){
    static queue<int> que;
    static int vst[N << 2];
    memset(vst, 0, sizeof vst);
    while(!que.empty()) que.pop();
    que.push(src);
    for(int i = src; i <= des; i++) cur[i] = adj[i], dis[i] = -OO;
    dis[src] = 0;
    while(!que.empty()){
        int u = que.front(); que.pop(); vst[u] = 0;
        for(int e = adj[u]; e; e = nxt[e]){
            int v = go[e];
            if(dis[v] < dis[u] + len[e] && cap[e]){
                dis[v] = dis[u] + len[e];
                if(!vst[v]) vst[v] = 1, que.push(v);
            }
        }
    }
    return dis[des] !=  -OO;
}

bool walk[N << 2];
inline int dinic(int u, int flow, int &ans){
    if(u == des){
        ans += flow * dis[u];
        return flow;
    }
    int delta, ret = 0;
    walk[u]=1;
    for(int &e = cur[u]; e; e = nxt[e]){
        int v = go[e];
        if(!walk[v] && dis[v] == dis[u] + len[e] && cap[e]){
            delta = dinic(v, min(cap[e], flow - ret), ans);
            if(delta){
                ret += delta, cap[e] -= delta, cap[e ^ 1] += delta;
                if(flow == ret) break;
            }
        }
    }
    if(flow != ret) dis[u] = -OO;
    return ret;
}

int lenn;
inline void uni(){
    lenn = 0;
    sort(box+1,box+n+1);
    for(int i = 1; i <= n; i++){
        if(box[i].x != box[i - 1].x || box[i].y != box[i - 1].y)
            unik[++lenn].x = box[i].x, unik[lenn].y = box[i].y;
    }
}
int main(){
    n = read(); src = 0, des = 2 * n + 1;
    for(int i = 1; i <= n; i++) box[i].x = read(), box[i].y = read();
    uni();
    for(int i = 1; i <= lenn; i++){
        sum += unik[i].x * unik[i].y;
        for(int j = 1; j <= lenn; j++){
            if(i == j) continue;
            if(unik[j].x >= unik[i].x && unik[j].y >= unik[i].y) 
                addEdge(i, j + n, 1, unik[i].x*unik[i].y);
        }
    }
    for(int i = 1; i <= n; i++) addEdge(src, i, 1, 0), addEdge(i + n, des, 1, 0);
    while(SPFA()){
        int ret = 0;
        memset(walk, 0, sizeof walk);
        dinic(src, OO, ret);
        sum -= ret;
    }
    wr(sum), putchar('\n');
    return 0;
}
posted @ 2017-10-19 18:22  CzYoL  阅读(204)  评论(0编辑  收藏  举报