NOIP 模拟 box - 费用流 / 匈牙利
题目大意:
给出n(\(\le 200\))个盒子,第i个盒子长\(x_i\),宽\(y_i\),一个盒子可以放入长宽都大于等于它的盒子里,并且每个盒子里只能放入一个盒子(可以嵌套),嵌套的盒子的占地面积等于最外层的盒子的占地面积,求最小的占地面积之和。
题目分析:
直接打了贪心,得了50分。用脑子想想就知道第3题怎么可能这么简单,果真。
本题的本质就是能不能给一个盒子找一个长宽都大于等于它的匹配。
- 匈牙利+贪心:如果a可以包含b,则连一条边a<-b,然后按照面积从大到小跑匈牙利,如果能够找到一个匹配,就把这个盒子的面积减掉。
- 费用流: 将一个盒子拆成两个点1~n, n+1~2n, 如果a可以包含b,就连一条a->b+n,流量为1(只能用1个),费用为\(S_b\)的边,最后从s向1n连流量为1,费用为0的边,从n+12n向t连流量为1,费用为0的边,跑最大费用最大流,将费用从总面积中减去。(费用流要去重)
code
匈牙利
#include<bits/stdc++.h>
using namespace std;
namespace IO{
inline int read(){
int i = 0, f = 1; char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(int x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
}using namespace IO;
const int N = 1000;
int n;
struct node{
int x, y;
inline bool operator < (const node &b) const{
return x*y < b.x*b.y;
}
}box[N];
bool vst[N << 2];
int mateR[N << 2], ecnt, adj[N << 2], nxt[N << 2], go[N << 2], ans, to[N][N];
inline bool hungry(int u){
for(int i = n; i > u; i--){
if(!to[u][i]) continue;
if(vst[i]) continue;
vst[i] = true;
if(!mateR[i] || hungry(mateR[i])){
mateR[i] = u;
return true;
}
}
return false;
}
inline void addEdge(int u, int v){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v;
}
int main(){
n = read();
for(int i = 1; i <= n; i++){
int x = read(), y = read();
box[i] = (node){x, y};
}
sort(box + 1, box + n + 1);
for(int i = 1; i <= n; i++){
ans += box[i].x * box[i].y;
for(int j = i + 1; j <= n; j++){
if(box[i].x <= box[j].x && box[i].y <= box[j].y)
to[i][j] = 1;
}
}
for(int i = n - 1; i >= 1; i--){
if(hungry(i)) ans -= box[i].x * box[i].y;
memset(vst, 0, sizeof vst);
}
wr(ans);
return 0;
}
费用流
#include<bits/stdc++.h>
using namespace std;
namespace IO{
inline int read(){
int i = 0, f = 1; char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(int x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
}using namespace IO;
const int N = 205, OO = 0x3f3f3f3f;
int n, ecnt = 1, adj[N << 2], nxt[100050], go[100050], cap[100050], len[100050];
int src, des, dis[N << 2], cur[N << 2], sum;
struct node{
int x, y;
inline bool operator < (const node &b) const{
return x < b.x || (x == b.x && y < b.y);
}
}box[N], unik[N];
inline void addEdge(int u, int v, int c, int cost){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, cap[ecnt] = c, len[ecnt] = cost;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u, cap[ecnt] = 0, len[ecnt] = -cost;
}
int vt = 0;
inline bool SPFA(){
static queue<int> que;
static int vst[N << 2];
memset(vst, 0, sizeof vst);
while(!que.empty()) que.pop();
que.push(src);
for(int i = src; i <= des; i++) cur[i] = adj[i], dis[i] = -OO;
dis[src] = 0;
while(!que.empty()){
int u = que.front(); que.pop(); vst[u] = 0;
for(int e = adj[u]; e; e = nxt[e]){
int v = go[e];
if(dis[v] < dis[u] + len[e] && cap[e]){
dis[v] = dis[u] + len[e];
if(!vst[v]) vst[v] = 1, que.push(v);
}
}
}
return dis[des] != -OO;
}
bool walk[N << 2];
inline int dinic(int u, int flow, int &ans){
if(u == des){
ans += flow * dis[u];
return flow;
}
int delta, ret = 0;
walk[u]=1;
for(int &e = cur[u]; e; e = nxt[e]){
int v = go[e];
if(!walk[v] && dis[v] == dis[u] + len[e] && cap[e]){
delta = dinic(v, min(cap[e], flow - ret), ans);
if(delta){
ret += delta, cap[e] -= delta, cap[e ^ 1] += delta;
if(flow == ret) break;
}
}
}
if(flow != ret) dis[u] = -OO;
return ret;
}
int lenn;
inline void uni(){
lenn = 0;
sort(box+1,box+n+1);
for(int i = 1; i <= n; i++){
if(box[i].x != box[i - 1].x || box[i].y != box[i - 1].y)
unik[++lenn].x = box[i].x, unik[lenn].y = box[i].y;
}
}
int main(){
n = read(); src = 0, des = 2 * n + 1;
for(int i = 1; i <= n; i++) box[i].x = read(), box[i].y = read();
uni();
for(int i = 1; i <= lenn; i++){
sum += unik[i].x * unik[i].y;
for(int j = 1; j <= lenn; j++){
if(i == j) continue;
if(unik[j].x >= unik[i].x && unik[j].y >= unik[i].y)
addEdge(i, j + n, 1, unik[i].x*unik[i].y);
}
}
for(int i = 1; i <= n; i++) addEdge(src, i, 1, 0), addEdge(i + n, des, 1, 0);
while(SPFA()){
int ret = 0;
memset(walk, 0, sizeof walk);
dinic(src, OO, ret);
sum -= ret;
}
wr(sum), putchar('\n');
return 0;
}