HDU 1080 Human Gene Functions - 最长公共子序列(变形)
题目大意:
将两个字符串对齐(只包含ACGT,可以用'-'占位),按照对齐分数表(参见题目)来计算最后的分数之和,输出最大的和。
例如:AGTGATG 和 GTTAG ,对齐后就是(为了表达对齐,这里我用m表示'-')
AGTGATG
mGTTAmG
题目分析:
首先看出这道题与LCS有关,下面来考虑转移:
当t1[i]==t2[j]时,和LCS一样,\(dp[i][j] = dp[i-1][j-1]+score[t1[i]][t2[j]]\)
当t1[i]!=t2[j]时,唯一不同的是这里会有3中选择:
- 让1i-1和1j-1对齐,加上ij对齐的分数。
- 让1i-1和1j对齐,加上i和'-'对齐的分数。
- 让1i和1j-1对齐,加上j和'-'对齐的分数。
取这三者的较大值。
最后总结方程如下:
\[dp[i][j] = dp[i-1][j-1]+score[t1[i]][t2[j]] (t1[i] == t2[j])
\]
\[d[[i][j] = max(dp[i-1][j]+score[t1[i]]['-'], dp[i][j-1]+score[t2[j]]['-'], dp[i-1][j-1]+score[t1[i]][t2[j]]) (t1[i] != t2[j])
\]
code
#include <bits/stdc++.h>
using namespace std;
const int N = 150, OO = 0x3f3f3f3f;
const int score[10][10] = {{0},
{0, 5, -1, -2, -1, -3},
{0, -1, 5, -3, -2, -4},
{0, -2, -3, 5, -2, -2},
{0, -1, -2, -2, 5, -1},
{0, -3, -4, -2, -1, 0}
};
int T, len1, len2;
string s1, s2;
int t1[N], t2[N], dp[N][N];
inline int getVal(char c){
switch(c) {
case 'A' : return 1; break;
case 'C' : return 2; break;
case 'G' : return 3; break;
case 'T' : return 4; break;
defualt: assert(false);
}
}
inline void init(){
memset(dp, 0, sizeof dp);
for(int i=1; i<=len1; i++) dp[i][0] = dp[i-1][0] + score[t1[i]][5];
for(int i=1; i<=len2; i++) dp[0][i] = dp[0][i-1] + score[t2[i]][5];
}
int main(){
freopen("h.in", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(NULL), cout.tie(NULL);
cin >> T;
while(T--){
cin >> len1 >> s1 >> len2 >> s2;
for(int i=0; i<len1; i++) t1[i+1] = getVal(s1[i]);
for(int i=0; i<len2; i++) t2[i+1] = getVal(s2[i]);
init();
for (int i=1; i<=len1; i++)
for (int j=1; j<=len2; j++) {
if(t1[i] == t2[j]) dp[i][j] = dp[i-1][j-1] + score[t1[i]][t2[j]];
else dp[i][j] = max(dp[i - 1][j - 1] + score[t1[i]][t2[j]],
max(dp[i - 1][j] + score[t1[i]][5],
dp[i][j - 1] + score[t2[j]][5]));
}
cout << dp[len1][len2] << endl;
}
}