HDU 1502 - dp + 压位
题目大意:
3*n的字符串,A、B、C分别有n个,w(X)代表X字母出现的次数,要求该字符串的所有前缀中w(A) >= w(B) >= w(C),问合法方案数有多少。
题目分析:
dp转移较为容易:\(dp[i][j][k] += dp[i - 1][j][k] + dp[i][j - 1][k] + dp[i][j][k - 1] (i >= j >= k)\)。
然而本题真的坑点是答案范围,可以使用字符串存储,算的时候转为int,算完再转回char[],也可以使用压位的方法,新开一维,表示答案的第l个4个数字是多少,输出是要注意中间可能出现要补零的情况。
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
using namespace std;
const int N = 62;
int n, ans[30];
int f[N][N][N][30];
inline void update(int i, int j, int k, int i1, int j1, int k1){
for(int p = 0; p <= 29; p++){
f[i][j][k][p] += f[i1][j1][k1][p];
f[i][j][k][p + 1] += f[i][j][k][p] / 10000;
f[i][j][k][p] %= 10000;
}
}
int main(){
memset(f, 0, sizeof f);
f[0][0][0][0] = 1;
for(int i = 1; i <= 60; i++)
for(int j = 0; j <= i; j++)
for(int k = 0; k <= j; k++){
update(i, j, k, i - 1, j, k);
if(j) update(i, j, k, i, j - 1, k);
if(k) update(i, j, k, i, j, k - 1);
}
bool ff = false;
while(~scanf("%d", &n)){
bool flag = false; int cnt = 0;
for(int i = 29; i >= 0; i--){
if(f[n][n][n][i]){
if(!flag) flag = true, ans[++cnt] = f[n][n][n][i];
else{
int tmp = f[n][n][n][i], tt = 0;
while(tmp) tt++, tmp /= 10;
for(int p = 1; p <= 4 - tt; p++) ans[++cnt] = 0;
ans[++cnt] = f[n][n][n][i];
}
}
else if(flag) ans[++cnt] = 0, ans[++cnt] = 0,ans[++cnt] = 0, ans[++cnt] = 0;
}
for(int i = 1; i <= cnt; i++) printf("%d", ans[i]);
printf("\n\n");
}
}