BZOJ 1857 - 三分套三分
题目分析
三分:
对于本题,先三分线段a上的点,再在三分计算函数中三分线段b上的点,三分套三分即可求出最优解。
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define eps 1e-8
double ax, ay, bx, by, cx, cy, dx, dy;
double disa, disb, p, q, r;
inline int read(){
int i = 0, f = 1;char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') ch = getchar(), f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar())
i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(int x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
inline double getlen(double x1, double y1, double x2, double y2){
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
inline double calc2(double da, double db){
double xa, xb, ya, yb;
if(fabs(ax - bx) < eps){
xa = ax;
ya = (ay < by) ? ay + da : ay - da;
}
else if(fabs(ay - by) < eps){
xa = (ax < bx) ? ax + da : ax - da;
ya = ay;
}
else{
xa = ax + da * (bx - ax) / disa;
ya = ay + da * (by - ay) / disa;
}
if(fabs(dx - cx) < eps){
xb = cx;
yb = (cy < dy) ? dy - db : dy + db;
}
else if(fabs(dy - cy) < eps){
xb = (cx < dx) ? dx - db : dx + db;
yb = cy;
}
else{
xb = dx - db * (dx - cx) / disb;
yb = dy - db * (dy - cy) / disb;
}
return da / p + getlen(xa, ya, xb, yb) / r + db / q;
}
inline double calc(double da){
double l = 0, r = disb, mid1, mid2;
for(int i = 1; i <= 60; i++){
mid1 = l + (r - l) / 3, mid2 = r - (r - l) / 3;
if(calc2(da, mid1) - calc2(da, mid2) > eps) l = mid1;
else r = mid2;
}
return calc2(da, l);
}
int main(){
scanf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf", &ax, &ay, &bx, &by, &cx, &cy, &dx, &dy, &p, &q, &r);
disa = getlen(ax, ay, bx, by);
disb = getlen(cx, cy, dx, dy);
double l = 0, r = disa, mid1, mid2;
for(int i = 1; i <= 60; i++){
mid1 = l + (r - l) / 3, mid2 = r - (r - l) / 3;
if(calc(mid1) - calc(mid2) > eps) l = mid1;
else r = mid2;
}
printf("%0.2f", calc(l));
}