【LeetCode】53. 最大子序和(剑指 Offer 42)
53. 最大子序和(剑指 Offer 42)
知识点:数组;前缀和;哨兵;动态规划;贪心;分治;
题目描述
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例
解法一:前缀和+哨兵
连续子数组 --> 前缀和
从前往后遍历求前缀和,维持两个变量,一个是最大子数组和,也就是答案,一个是最小的前缀和,我们可以把这个值理解为哨兵,这个就是我们用来获取答案的,因为每次前缀和-这个最小的肯定就是最大的。
解法二:贪心
这道题贪心怎么解?贪什么呢?想一下在这个过程中,比如-2 1,我们需要-2吗?不需要!因为负数只会拉低我们最后的和,只起副作用的索性不如不要了。直接从1开始就行了; 贪的就是负数和一定会拉低结果。
所以我们的贪心选择策略就是:只选择和>0的,对于和<=0的都可以舍弃了。
解法三:分治
这道题可以用分治去解。期望去求解一个区间[l,r]内的最大子序和,按照分而治之的思想,可以将其分为左区间和右区间。
左区间L:[l, mid]和右区间R:[mid + 1, r].
lSum 表示 [l,r] 内以 l 为左端点的最大子段和
rSum 表示 [l,r] 内以 r 为右端点的最大子段和
mSum 表示 [l,r] 内的最大子段和
iSum 表示 [l,r] 的区间和
递归地求解出L.mSum以及R.mSum之后求解M.mSum。因此首先在分治的递归过程中需要维护区间最大连续子列和mSum这个信息。
接下来分析如何维护M.mSum。具体来说有3种可能:
- M上的最大连续子列和序列完全在L中,即M.mSum = L.mSum
- M上的最大连续子列和序列完全在R中,即M.mSum = R.mSum
- M上的最大连续子列和序列横跨L和R,则该序列一定是从L中的某一位置开始延续到mid(L的右边界),然后从mid + 1(R的左边界)开始延续到R中的某一位置。因此我们还需要维护区间左边界开始的最大连续子列和leftSum以及区间右边界结束的最大连续子列和rightSum信息
解法四:动态规划
- 1.确定dp数组和其下标的含义:dp[i]表示以i结尾的连续子数组的最大和;
- 2.确定递推公式,即状态转移方程:以i结尾想一下我们有几种可能,一种是i-1过来的,也就是上一个的连续子数组延续到i处了,那和就为dp[i-1]+nums[i],另一种呢,就是自己开始,前面那个连续子数组不行,那就是nums[i]了,想一下为什么前面那个不行,还不是前面的和会拖累自己,那就意味着前面的和是负数;这其实就引出贪心的方法了。不过我们这里不用这么麻烦,直接用一个max函数,取两者大的那个就行;
- 3.dp初始化base case:dp[0]只有一个数,所以dp[0] = nums[0];
当然上述程序可以优化,因为我们的dp[i]其实只和前一状态i-1有关,所以可以采用一个滚动变量来记录,而不用整个数组。
体会
这道题目是一道很典型的题目,用到了各种方法和思想。要常看常做,分治是其中比较困难的,但是要会这种思想。这道题目最好的方法还是哨兵和动态规划, 其实贪心就是从动态规划的一个特殊情况过去的,体会两者的关系;
__EOF__

本文链接:https://www.cnblogs.com/Curryxin/p/15129875.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了